
Personal Computer

IIIZ·OOODU
Symbolic Debugger

SHARP


~~~~~~~~~~~-~:::~~~~~~~~~~ 

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP 
CORPORATION. Hardware and software specifications are subject to change without 
prior notice ; therefore, you are requested to pay special attention to version numbers 
of the monitor and the system software (supplied in the form of cassette tape or mini­
floppy disk files). 
This manual is for reference only and the SHARP CORPORATION will not be res­
ponsible for difficulties arising out of inconsistencies caused by version changes, 
typographical errors of omissions in the descriptions. ~ 

This manual is based on the SB-1500 series monitor and the SB-7000 series Flop~y 
DOS. 

~~..,..,.._,~,..._,.....,....~~~~~-~-~-9..~ -~~~--~~-~-~'0>~~~~-"""t~"-"' -~--'---.......--~ ......... -~'-i'~.....,-~~~>'i"'~ ......--......, 



-CONTENTS-

IN"TRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Starting the Symbolic Debugger ..... ·. . . . . . . . . . . . . . . . . . . . . . . . 2 

SYMBOLIC DEBUGGER COMMAND TABLE................... 3 

BREAKPOIN"TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

USIN"G THE DEBUGGER COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . 5 

T (Table dump) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

Link message examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

B (Breakpoint) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

& (Clear B:P) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

M (Memory dump) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

D (Memory list dump) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

W (Data wrtie) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

G (Go to) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

I (Indicative start) Command . .. ........................... 14 

A (Accumulator) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

C (Complementary) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

P (Program counter) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

R (Register) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Using regist~r commands A, C, P and R ..................... 17 

X (Data transfer) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

S (Save) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Y (Yank) Command ...................................... 20 

'\. (Floppy DOS) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

# Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

! Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

ERROR MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

DEB 





INTRODUCTION 

The SHARP MZ-80B symbolic debugger links and loads one or more program units from relocatable 

files to form an object program in memory in an immediately executable form and runs the object pro­

gram for debugging. It provides the programmer with facilities for taking a memory dump of the object 

program in the link area, for setting a breakpoint in the program, for displaying and altering the contents 

of the CPU internal registers and for starting execution of the program at a given address with the CPU 

internal registers set to specified values (indicative start). 

Relocatable 
me units (RB) 

Linking 
Symbolic debugger debugging 
operations (program execution, 
breakpoint setting, data 
alteration) 

Debugging with the symbolic debugger 

Program execution 

The debugger is said to be "symbolic" since it permits the programmer to reference addresses (e.g., 

breakpoints) during debugging not only in absolute hexadecimal representation but with global symbols 

declared as entry symbols in the source program with the ENT assembler directive. This releases the 

programmer from the burden of remembering relative addresses in relocatable programs and offset values 

specified when they are loaded. 

In normal program development process, the programmer debugs each object program unit with the 

symbolic de bugger and, if he finds errors, he reedits its source program and reassembles it. After debugging 

all object program units, the programmer links and loads them with the linker to form the final object 

program. 

Symbolic debugger commands are summarized in the table on page 3. Commands marked with a 

dagger permit symbolic operations. The debugger creates the symbol table in the same way as the linker. 

Floppy DOS 

Symbolic debugger 

Relocatable me #1 ... 

' Y command 

Object me 

~ 
.A' 

S command 
Relocatable me #2 

'-+ Symbol table 

Symbolic debugger file processing 

OEB-1 



-Starting the Symbolic Debugger-

The symbolic de bugger is started by entering one of the commands below in the DOS command mode. 

1. DEBUG I CRI 

The debugger is invoked and the debugger command wait state entered. 

2. DEBUG [filename 1, ........... filename N] I CRI 

The debugger links and loads program units from relocatable files filename 1 through filename N and 

waits for entry of a debugger command. 

3. DEBUG/P ABC I CRI 

The debugger loads the program unit froin file ABC.RB and prints the link information shown in Figure 

1 on the printer. 

4. DEBUG/P/T ABCICRI 

The debugger loads the program unit from file ABC.RB and prints the link and symbol table informa­

tion on the printer. 

5. DEBUG ABC, XYZ, TBL$20 I CRI 

The debugger links and loads program units from relocatable files ABC.RB and XYZ.RB and waits for 

entry of a debugger command. It also reserves 2000 (hex) bytes (approxima.tely 8K bytes) of space for the 

symbol table. Approximately 6K bytes of space are reserved when the table size is not specified. 

6. DEBUG ABC, $1000, XYZ, DEF/0 I CRI 

The debugger links and loads program units from relocatable files ABC.RB and XYZ.RB to generate an 

object program in object program file DEF.OBJ, then waits for entry of a debugger command. It reserves 

4K bytes of free space (offset of 1000 (hex)) between program.units ABC and XYZ. 

Note: When the debugger is invoked and the command wait state entered, all files (including those speci­

fied in the DEBUG command) are kille<I:. 
/ 

Linking ABC.RB 
Top asmabias $6100 
End asm.bias $613A 

I<EYIN 61:::;s u 
Debugger area 6100-6139 

Figure 1. 

! .... inking ABC.RB 
Top asmabias $6100 
End asm.bias $613A 

Symbol table 
CLEAF: 6125 DF: I NO D FFEC 
STr~F!T 6100 
Debugger area 6100-6139 

DEB-2 

61:::::8 1....1 1'1TFG 

Figure 2. 



SYMBOLIC DEBUGGER COMMAND TABLE 

Command type Command name Function 
' 

T Displays the contents of the symbol table ; i.e., the label symbol 
Symbol table command name, its absolute address and the definition status for each ta~le 

entry. (Table Dump) 

Bt Displays, sets or alters a breakpoint. (Breakpoint) 

& Clears all breakpoints set. (Clear Breakpoints) 

Mt Displays the contents of the specified block in the link area in 
hexadecimal representation or alters them. (Memory Dump) 

nt Displays the contents of the specified block in the link area in 
hexadecimal representation with one instruction on a line. 
(Memory List Dump) 

wt Writes hexadecimal data, starting at the specified address in the 
link area. (Write) 

et Executes the program at the specified address. (GOTO) 

I Executes the program at the address designated by PC with the 

Debugging commands register buffer data set to the CPU internal reigsters. 
(Indicative Start) 

A Displays the contents of registers A, F, B, C, D, E, Hand L in hexa-
decimal representation or alters them. (Accumulator) 

c Displays the contents of complementary registers A', F', B', C', D', 
E', H' and L' in hexadecimal representation or alters them. 
(Complementary) 

p Displays the contents of registers PC, SP, IX, IY and I in hexa-
decimal representation or alters them. (Program Counter) 

R Displays the contents of all registers in hexadecimal representation. 
(Register) 

X Transfers the specified memory block to the specilled address. 
(Transfer) 

' 

s Saves the object program in the link area in an output ftle with the 

File I/0 commands 
specified name. (Save) 

y Reads the object program from the object file with the specified 
file name into memory. (Yank) 

\ Executes the specified DOS built-in command. 

Special commands # Switches the printer list mode for listing printout. 

! Transfers control to Floppy DOS. 

Note: Commands marked by a dagger permit symbolic operations. 

DEB-3 



BREAKPOINTS 

A breakpoint is a checkpoint set up in the program at which program execution is stopped and the 

contents of the CPU registers are saved into the register buffer. At this point, the programmer can examine 

and alter the memory and register contents. He can also restart the program at this point. Thus, break­

points facilitate program checking and debugging. 

The symbolic debugger allows a maximum of nine· breakpoints. When setting a breakpoint, the pro- ~ 

grammer must specify not only its address but also its count. The count specifies the number of allowable 

passes through the breakpoint in a looping program before a break actually occurs. The maximum allow­

able value of the break count is E in hexadecimal ( 14 in decimal). 

When a breakpoint is set in a program, the debugger saves the operation code at that location (address) 

in the break table and replaces it with code F7. The de bugger creates one breaktable entry for each break­

paint as shown below. 

Saved operation code 

~ 
l 

Breakpoint address 
(label symbol) F7 

Break count I Variable count l 

Breaktable entry 
Object program 

Hexadecimal code F7 is the operation code for RST 6, which initiates a break operation. When the 

RST 6 instruction, which is a 1-byte CALL instruction, is executed, the contents of the program counter 

are pushed into the stack and the program counter is loaded with new data 0030H; that is, program 

control jumps to address 0030H in the monitor, from which point control is immediately passed to the 

debugger. The debugger searches the breaktable for the pertinent breakpoint. If the breakpoint is not 

found, the debugger displays error message "RST6?." Thus, the RST 6 instruction is used in the system 

and cannot be used by user programs. 

When the debugger finds the required breakpoint in the table, it checks the corresponding count and 

decrements the variable count (this count is initially set to the break count) by one. If the variable count 

reaches zero, the debugger performs break processing; otherwise, it continues program execution. 

DEB-4 



USING THE DEBUGGER COMMANDS 

-T (Table dump) Command-

The T command displays the contents of the symbol table, that is, the label symbol name, its absolute 

address and its definition status. 

* DT Displays the contents of the symbol table. 

- Enter a T command in response to the prompt "* D ". 

- The debugger displays the label symbol name, its absolute address (in hexadecimal) and the definition 

status for each symbol table entry. The programmer can detect symbol definition errors by checking 

the definition status of the displayed label symbols. 

~ - Messages pertaining to the symbol table definition status are identical to those issued by the tinker. 

The definition status messages are listed below, followed by examples. 

Two symbol table entrie~ are displayed on a line when the number of characters per line is set to 40 

and four entries are displayed on a line when it is set to 80. 

Message Definition status 

u Undefined symbol (address or data) 

M Multi-defmed symbol (address or data) 

X Cross-defmed symbol (address or data) 

H Half-defined symbol (data) 

D EQU-defmed symbol (data) 

No message is attached to symbols for which an address has been defined. 

U, M, X and H indicate error conditions. 

DEB-5 



Link message examples 

First program unit loaded (UNIT -#1) 

TMDLYH: LD 
COUNT: ENT 

DEC 
LD 
CP 
JR 
LD 
CP 
JR 
CP 
JR 
RET 

PEND: ENT 
DEFM · 

DEFB 
COUNTl: EQU 
CO UNTO: EQU 

END 

Second program unit loaded (UNIT -#2) 

TMDLYL: LD 
LOOPl: DEC 

LD 
CP 
JR 
RET 

PEND: ENT 
DEFM 
DEFB 

START: EQU 
COUNT: EQU 

END 

Third program unit loaded (UNIT -#3) 

INPUT: CALL 
CALL 
CALL 
LD 
CP 
JR 
LD 
INC 
JR 

END: JP 
COUNT2: EQU 

END 

HL, START 

HL 
A,H 
CO UNTO 
NZ, COUNT 
A,L 
COUNT I 
NZ, COUNT 
COUNT2 
NZ, COUNT 

1 TMDLYH I 

ODH 
OOH 
50H 

HL, START 
H 
A,H 
COUNT 
NZ, LOOPl 

I TMDLYL, . 

ODH 
lOOOH 
OOH 

OOlBH 
TMDLYL 
OOlBH 
HL, START 
ODH 
Z,END 
(HL), A 
HL 
INPUT 
OOOOH 
12 

OEB-6 

"START" X 

START is not defined as an address in the 

flrst program, but is deflned as data in the 

second or subsequent program with the 

START: EQU st~tement. 

Note: The EQU statement should be placed 

at the beginning of the program unit. 

"COUNT2" H 

COUNT2 is not defined as data in the first 

program, but is defined as data in the third 

program with the COUNT2: EQU state­

ment. 

"COUNT!" D 

COUNT 1 is defined as data (D indicates no 

error condition). 

"COUNT" X 

COUNT is defined as an address in the first 

program while it is simultaneously defined 

as data in the second program. 

"PEND" M 

PEND is defined as an address in the first 

program while it is simultaneously defined 

as an address in the second program (dupli­

cated definition). 

"TMDLYL" U 

TMDL YL is neither defined as an address 

nor declared with the ENT directive in any 

other external program unit. 



-8 (Breakpoint) Command-

The B command sets or changes a breakpoint. A breakpoint occurs after instructions immediately 

preceding the breakpoint are executed the number of times specified in the break counter. When a break­

point is taken, program execution is interrupted and control is passed to the debugger. The debugger saves 

the contents of the CPU registers into the register buffer and waits for a debugger command. The program­

mer can specify the breakpoint with either an absolute hexadecimal address or a label symbol (the label 

symbol can be given a displacement of from -65535 to 65535 in decimal). 

addr count 

5111 

Sets a breakpoint. 

The breakpoint is address 7530 and the break count is 2. 

The breakpoint is the address represented by label symbol "SORT3" and 

-- the break count is 1. 

The breakpoint is the address of the instruction 5 lines away from the 

address represented by label symbol "SORT3" and the break count is 1. 

The breakpoint is the address of the instruction 9 bytes before the 

address represented by label syinbol"MAINO" and the break count is 2. 

(The breakpoint and the break count must be separated by at least one 

blank (denoted by L_l ).) 

- Enter the B command in response to the prompt " * D ". 

The debugger carries out a new line operation and displays "addr count''. It then performs a new line 

operation and displays the breakpoint number followed by a space and the cursor to prompt the 

programmer to enter a breakpoint address and a break count. 

The programmer may specify a breakpoint address with a 4-digit hexadecimal number or a global 

symbol (see the · example above). In either case, enter an a~dress followed by a space and a break 

count. The break count specifies the number of allowable passes through the breakpoint before a 

break actually occurs. The programmer can specify a hexadecimal value from 1 to E. 

When a break count is entered, the debugger performs a new line operation and displays the next 

breakpoint number to prompt for the next breakpoint address. 

- When a label symbol is entered as a breakpoint address, the de bugger displays message "???" and waits 

for a new command if the pertinent symbol is not defined or if the symbol is a data defining symbol. 

- No breakpoint can be specified for the DJNZ instruction When a breakpoint is specified for the DJNZ 

instruction, the de bugger displays message "DJNZ?" and waits for entry of a new command. 

- No breakpoint can be specified for the CALL instruction either. Breakpoints cannot be specified for 

any instructions which push the program counter contents into the stack. The debugger will display 

the message "CALL?" if such an attempt is made. 

To check a CALL instruction, set a breakpoint at the beginning of the called routine. 

DEB-7 



- To clear a previously set breakpoint, enter that breakpoint address with a break count of 0 (use the & 

command to clear all breakpoints). 

The debugger displays message "???" and ·waits for a command when an attempt is made to clear 

an undefined breakpoint. 

- The programmer can specify a maximum of nine breakpoints. When the programmer specifies nine 

breakpoints, the de bugger displays "X" on the next line instead of the next breakpoint number. This 

requests the programmer to clear a breakpoint or change a break count, not to set a new breakpoint. 

If the programmer attemps to set a new breakpoint, the debugger will not accept it and prompts for 

a new command with message "Over". 

When a B command is entered after breakpoints are set, the debugger displays them; in this case, the 

hexadecimal address is displayed first, followed by the break count format. 

The programmer can use the I DELl key while setting breakpoints. When the I CRI key is pressed, 

the debugger is returned to the command wait state. 

DEB-8 



-&(Clear B. P) Command-

' 

Clears all the breakpoints which have been set. 

- Enter the & command in response to the prompt" * D". 

- The debugger clears all breakpoints set and waits for entry of a new command. 

The photo at right shows an example of setting 

breakpoints. The breakpoints are set with a 

4-digit hexadecimal number (absolute address), a 

global label symbol, a label symbol plus a line 

specification and a label symbol plus a byte 

displacement. 

- The photo at right shows that breakpoint 

"KEYIN" has been cleared on the line identi­

fied by "X". 

- The photo at right shows an example of display­

ing previously set breakpoints with a B command. 

Breakpoints are displayed with hexadecimal 

absolute addresses shown first, followed by the 

break counts and the label symbols. 

- The photo at right shows that a break occurred 

immediately when the program was executed 

from address 6300 with a G command with a 

breakpoint at 6300 and a count of 1. As soon as 

a breakpoint was taken, an R command was 

executed to display the status of the CPU re­

gisters. 

The status of the CPU registers is displayed on 

one line when the number of characters per line 

is set to 80. 

DEB-9 



-M (Memory dump) Command-

The M command displays the contents of the specified memory block in hexadecimal representation. 

The memory block may be specified with either absolute he~adecimal addresses or label symbols. The M 

command permits the programmer to alter data with the cursor. 

* DM 7800 L_J 7850 I CRI . 

* DM MAIN7L_JMAIN9 I CRI 

* DM STEP0-9L-JSTEP3+15L I CRI 

Displays the contents of the memory block from 7800 

to 7850. 

Displays the contents of the memory block from the 

address identified by "MAIN7" to the address identified 

by "MAIN9". 

Displays the contents of the memory block from the 

address 9· bytes before the address identified by label 

symbol "STEPO" to the address of the instruction 15 

lines away from label symbol "STEP3". 

- Enter the M command in response to the prompt 11 * D11
• 

- The debugger displays the cursor wit~ a space between the cursor and the letter M and waits for the 

programmer to enter the starting and ending addresses of the memory block to be dumped. The pro­

grammer may specify the starting and ending addresses of the memory block with either 4-digit 

hexadecimal numbers or global symbols. 

- The starting address must be smaller than or equal to the ending address. Otherwise, the debugger will 

display the message 11 ? ". 

- When a memory block in the link area is specified, the debugger displays a dump of memory contents 

on the screen with 8 bytes on a line in the 40 characters per line mode and with 16 bytes on a line in 

the 80 characters per line mode. 

- If the pririter is placed in the enable mode, the debugger prints the memory dump.on the printer with 

16 bytes on a line. 

- The cursor appears on the screen when the memory block dump is completed. The programmer can 

then alter byte data in the memory dump by moving the cursor to the desired byte position on the 

screen, entering the new byte data in hexadecimal and pressing I CRI. The byte data under the cursor 

is overwritten with the new data. The debugger displays the message "Error" if the data entered does 

not match the byte format. 

- When I CRI is pressed with the cursor on a memory dump line, the data on that line is reentered into 

memory. The debugger is returned to the command mode, however, when I CRI is pressed with the 

cursor at the beginning of a line containing no data. 

- Press the I SPACE I key to suspend display of the memory dump. To resume display, press the I SPACE I 
key again. 

- Press the I BREAK I key to force the debugger into the command mode. 

DEB-10 



-D (Memory list dump) Command-

The D command displays the contents of the specified memory block in hexadecimal representation 

with one instruction on a line. The memory block may be specified with either absolute hexadecimal 

addresses or label symbols. The programmer cannot alter memory contents through cursor manipulation. 

* DD 7800L..J 7850 I CRI 

*DD STARTL..JMAINO !CRI 

*DD 7500L..JSTART+l2L !CRI 

Displays the contents of the memory block from addresses 

7800 to 7850 with one instruction on a line. 

Displays the contents of the memory block from the 

addresses identified by "START" to the address identified 

by "MAINO" with one instruction on a line. 

Displays the contents of the memory block from address 

7500 to the address of the instruction 12 lines away from 

the label symbol "START" with one instruction on a line. 

- Enter the D command in response to the prompt " * D'". 

- The debugger displays the cursor with a space between it and the letter D, then waits for the pro-

grammer to enter the starting and ending addresses of the memory block to be dumped. The pro­

grammer may specify the starting and ending addresses of the memory block either with 4-digit 

hexadecimal numbers or global symbols. As with the M command, the starting address must be smaller 

than or equal to the ending address. 

- Press the I CRI key after specifying the required memory block; the degugger then displays an address 

and machine language code on each line. 

Consider the source program shown below, 

which contains the label symbols "START" and 

"MAINO". Assume that the corresponding object 

code is loaded in memory starting at address 

7500. When a D command is entered, the de­

bugger displays a dump listing on the screen as 

shown in the photo at right. 

START: ENT 
LD SP, START 
CALL MSTP 
XOR A 
LD (? TABP), A 
LD B, A 

MAINO: ENT 
LD A, OFH 

It must be noted that the memory block starting address specified in the D command must contain 

an operation code. If the starting address contains a data byte, subsequent lines dumped will display 

meaningless instructions which read that data byte as an operation code. The same note applies 

to the data areas (defined by DEFB and DEFW, etc.) in the memory block. 

DEB-11 



Display of the memory dump listing can be suspended and resumed with the! SPACE I key. 

- The D command does not allow memory alteration; after the memory dump is completed, the de­

bugger is returned to the command wait state. 

- Press the I BREAK I key to terminate this command in the middle of a dump. 

-W {Data write) Command-

The W command writes hexadecimal data, starting at the specified memory address. The memory 

address may be either an absolute hexadecimal address or a label symbol. 

* DW 8000 j·cR I Writes machine language data, starting at address 8000. 

* DW DATAl I CRI Writes machine language data, starting at the address identified by label 

symbol "DATAl". 

- Enter theW command in response to the prompt "* D". 

- The debugger displays the cursor with a space between it and the letter W, then waits for the program-

mer to enter the starting address of the memory area to be written. 

The programmer may specify the memory block starting address with a 4-digit hexadecimal number or 

a global symbol. 

- The memory area to be written must be inside the link area. 

*DW 1111 } 
1111 Address 1111 is not in the link area. 

? ? ? 

- When the programmer presses the I CRI key after specifying an address, the de bugger displays that 

address on the next line to prompt the programmer to enter 2-digit hexadecimal data. 

The debugger enters a space each time 2-digit data is entered and performs a new line operation and 

displays a new address each time eight bytes of data are entered. 

- To correct the data just entered, press the El key 

to return the cursor to the byte of data just en­

tered and correct it. The photo on the right shows 

an example. As the photo shows, when the El 
key is pressed, the cursor is placed on the next 

line and the address of the byte of data to which 

the cursor is moved is displayed. 

To specify a displacement for a JR, DJNZ or other Z80 relative jump instruction, enter a period; 

the debugger waits for the programmer to enter an absolute address (no label is allowed) with a 4-digit 

hexadecimal number as the destination of the jump. When the programmer enters a 4-digit hexa­

decimal address, the debugger computes the displacement and stores the 1-byte result in the current 

byte position. The seventh and eighth lines in the photo above show an example· of specifying_ a 

displacement. 

- After the necessary data has been written, press I CRI; the debugger then returns to the command wait 

state. 

DEB-12 



-G (Goto) Command-

The G command transfers program control to the specified address. This command is also used to 

restart the program following a break. 

* DG 7700 I CRI 

* DG STARTICRI 

* DGICRI 

Executes the program at address 7700. 

Executes the program at the address identified by label symbol "START". 

Restarts the program at the breakpoint. The restart address and CPU 

register data are stored in the register buffer. 

- Enter a G command in response to the prompt "* D ". 

The debugger then waits for entry of an execution address. The programmer can specify the execution 

address with either a 4-digit hexadecimal number or a global hibel symbol defined with the ENT 

assembler directive. 

When using a label symbol, the programmer can specify the execution address on a line or byte basis. 

* DG MAINO Executes the program at address "MAINO ". 

* DG MAIN0+3L Executes the program at the address 3 lines after "MAINO". 

* DG MAIN0-12 Executes the program at the address 12 bytes before the address identi­

fied by "MAINO". 

- To restart the program at a breakpoint, enter a G command and press! CR j. If this operation is initiated 

when no breakpoint is taken, the debugger returns to the command wait state without executing the 

program. 

The contents of the CPU registers to be restored when the program is restarted are displayed with the 

R command. The value in the program counter (PC) is used as the restart address. Since the PC value 

can be changed with the P command, it is possible to restart the program at an address other than the 

breakpoint. 

- Press the I BREAK I key to terminate entry of a G command. 

DEB-13 



-1 {Indicative start) Command-

The I command executes the program with the CPU registers loaded with the register buffer contents. 

The execution address is designated by the program counter. The contents of the CPU registers can be 

specified by the programmer through use of the A, C and P commands. 

* _DI Executes the program at the address 
A F B c D E H L designated by the program counter 
01 23 45 67 89 AB CD ED 
A' F' B' C' D' E' H' L' with the data shown on the screen 

01 23 45 67 89 AB CD EF loaded in the CPU registers. 

PC SP IX IY I 
78AB lFEA 5F70 4F50 00 
Start OK? B 

- - ~ 

- Enter the I command in response to the prompt" * D". -----.._ 

- The debugger displays the 2- and/or 4-digit hexadecimal values to be loaded into the CPU registers. 

These values are stored in the register buffer. They can be displayed with the R command. 

- The debugger then displays message "Start OK?''. To start the program in this environment, press 

I CR 1. The debugger then executes the program, starting at the address designated in the program 

counter. To ~hange register values or terminate the I command, press the I BREAK I key; the debugger 

then returns to the command wait state. 

- The figure below shows how the CPU registers are set with the I command. 

' Register buffer 

General register AF BC DE HL \ CD 
set AF' BC' DE' HL' Z80 CPU 

Special-purpose SP IX IY I 

~ register set PC 

The CPU general registers and special-purpose registers SP, IX, IY and I are loaded first; the program 

counter is then loaded with the execution address and the program is executed. 

- l;he photo at right shows how the debugger 

responds to the I command and executes the 

program (at address 7500 in this example.) 

- The status of the CPU registers is displayed on a 

line in the 80 characters per line mode. 

DEB-14 



-A (Accumulator) Command-

The contents of the Z80 CPU registers are saved in the register buffer when a breakpoint is taken; the 

contents of the primary general registers saved can be displayed with the A command. The buffer contents 

can also be altered using cursor manipulation. 

DA 
A F 
01 23 

B C 
45 67 

D E H L 
89 AB CD EF 

- Enter the A command in response to the prompt" * D''. 

Displays the contents of primary register 

pairs AF, BC, DE and HL. 

- The debugger displays the contents of accumulator A, flag register F, and general register pairs BC, DE 

and HL with 2-digit hexadeciaml numbers. These values represent the contents of the primary CPU 

registers set up when a break occurs at a breakpoint. They are stored in the register buffer for use in 

subsequent restart operations (see the G command description) at the breakpoint. 

- The de bugger displays the cursor on the line following the one last displayed. If necessary, the pro­

grammer can alter the register contents. To change a register value, place the cursor oh the desired 

register value, overwrite it with a new value, and press I CRI (the cursor will move to the beginning of 

the next line). 

The register values displayed or altered with the A command are those values which will be restored 

to the CPU internal registers on a restart at a breakpoint or on an indicative start with the I command. 

- Press I CRI key; the debugger then returns to the command wait state. 

-C (Complementary) Command-

The C command displays the contents of the complementary general-purpose registers set up on the last 

break. The programmer can alter their contents through cursor manipulation. 

DC 
A' F' B' C' D' E' H' L' 
01 23 45 67 89 AG CD EF 

- Enter the C command in response to the prompt " * D ". 

Displays the contents of complementary ' 

register pairs AF', BC', DE' and HL'. 

- The de bugger displays the contents of accumulator A', flag register F' and general-purpose register 

pairs BC', DE' and HL' with 2-digit hexadecimal numbers. The contents of the registers and the mean­

ings of the register contents and data altered through cursor manipulation are the same as with the 

A command. They are used for restart at a breakpoint or with the I command. 

- Press the I CRI key; the debugger then returns to th~ command wait state. 

DEB-15 



-P (Program counter) Command-

The P command displays the contents of the special-purpose registers set up on the last break. The 

programmer can alter their contents through cursor manipulation. 

DP 
PC SP 
78AB lFEA 

IX 
5F70 

IY 
5F50 

I 
00 

- Enter the P command in response to the prompt" * D". 

Displays the contents of special-purpose 

registers PC, SP, IX, IY and I. 

- The de bugger displays the contetns of special-purpose registers PC, SP, IX, IY and I with 2- and/ or 

4-digit hexadecimal numbers. The meanings of the register contents and the data altered through 

cursor manipulation are the same as with the A and C commands. 

(/~ 

The register values displayed or altered through cursor manipulation are restored into the pertinent ~ 

registers upon restartat a breakpoint or upon indicative start with the I command. The program does 

not have to restart at _the breakpoint; the programmer can specify another restart address by altering 

the PC value. 

- Press I CRI key; the debugger then returns to the command wait state. 

-R (Register) Command-

The R command displays the contents of all CPU internal registers set up on the last break or altered 

with the A, C or P commands. The programmer cannot alter their contents. 

*DR Displays the contents of all CPU 
A F B c D E H L registers. 
01 23 45 67 89 AB CD EF 
A' F' B' C' D' E' H' L' 
01 23 45 67 89 AB CD EF 
PC SP IX IY I 
78AB 1FEA 5F70 5F50 00 

- Enter the R command in response to the prompt" * D". 

- The debugger displays the contents of all CPU registers with 2- and/or 4-digit hexadecimal numbers. 

The cursor does not appear in the screen, so the programmer cannot alter their values. 

The same data is automatically displayed when a break occurs or when an indicative start is initiated 

with the I command. 

- The· debugger enters the command wait state after displaying all the register contetns. 

- The above display is on 1 line in the 80 characters per line mode. 

DEB-16 



Using register commands A, C, P and R 

Values displayed with register commands (A, C, P and R) are the actual contents of the register buffer 

in the debugger. The register buffer in the debugger contains values loaded whe~ breaks occur or when 

changes are made through cursor manipulation with the A, C or P command. The values are restored 

to the CPU registers when a restart is made from a breakpoint or when an indicative start is made. 

The figure below shows the relationship between the CPU registers and the register commands; the 

photos show examples of use of the register commands. 

I Z80 CPU REGISTER I 
. BREAKPOINT 

CPU REGISTER BUFFER 

MAIN REG SET AF BC DE HL - A command 

COMPLEMENTARY REG SET AF' BC' DE' HL' - Ccommand 

SPECIAL PURPOSE REG SET PC SP IX IY I - Pcommand 

RESTART FROM B.P. ! OR 
INDICATIVE START Rcommand 

I Z80 CPU REGISTER I 

A command Pcommand 

Ccommand Rcommand 

DEB-17 



-X (Data transfer) Command-

The X command trasfers the contents of the specified memory block to the specified memory area. 

* DX 
From? 7500 To? 811F Top? 9000 

Transfers the contents of the memory block 

from addresses 7500 to 811F to the memory 

area starting at address 9000. 

- Enter the X command in response to the prompt " * D". 

The debugger displays the message "From?" and waits for the programmer to enter the starting 

address of the source memory block with a 4-digit hexadecimal number. When the starting address 

is entered, the debugger displays the message "To?" to prompt the programmer to enter the ending 

address of the source memory block with a 4-digit hexadecimal number. When the ending address 

is entered, the debugger displays the message "Top?" to prompt the programmer to enter the starting 

address of the destination memory area with a 4-digit hexadecimal number (symbolic addresses are 

disallowed). 

- When the last address is entered, the de bugger starts transferring· the memory block. After completing 

the trasfer, it returns to the command wait state. 

- The source and destination memory blocks must be located within the link area. 

Data trasfer is accomplished successfully even if the source and destination memory blocks overlap 

as shown below. The memory block shown in the figure at left may be trasferred to the memory 

block shown in the figure at right and vice versa. 

Symbolic debugger Symbolic debugger 

Link area 

Memory block ~ Memory block 

Symbol table 
~ 

- The photo at right shows how the debugger trans­

fers the memory block starting at address 7500 

and ending at address 750F to the memory area 

starting at address 7 508. 

Compare the memory contents displayed with 

the two M commands. 

The contents of 8 memory bytes are displayed 

on each line in the 40 characters per line mode 

and the contents of 16 memory bytes are display­

ed on each line in the 80 characters per line mode. 

DEB-18 

Symbol table 
-

•DM 7588 7'51F 

7588 '54 4E 4C 32 87 68 88 
7'588 4D 4F 4E 4C 59 8F 88 
7'518 4( 4F 41 4D 45 53 81 
7'518 83 4( 4F 4E 47 88 88 

•Dx 
From? 7'588 To? 758F Top? 
*DM 7'588 7'51F 

7'588 4 4C 32 87 68 88 
7'58:3 4 4C 32 87 68 88 
7S18 4 4E 4C '59 8F 88 
7'5 1:::: 4 4F 4E 47 88 88 

H·m 

Link area 

4C TNL2.h.L 
88 MONLY ... 
F9 LOAMES.!I 
84 . L<)NG ... 

7588 

4C TNL2.h.L 
4C TNL2.h.L 
88 MONL 'r ••• 
04 • LC•NG ••• 



-S (Save) Command-

The S command saves a specified block of the object program in the symbolic debugger link area into 

a named output file in immediately executable form. The contents of this file can be restored to the link 

area with the Y command. 

* DSfilename I CRI 

TBEL_j 7500l_j8FFF l_j 7500 I CRI 

,. 

Saves the immediately executable object program 

from addresses 7500 to 8FFF in the link area to an 

object file with a file naine of filename. OBJ. 

Enter the S command followed by a file name in response to the prompt "* D ". 

- Press I CRI after entering a file name. The de bugger displays a TBE (Top-Bottom-Execute) message 

after verifying that the specified file does not exist on the specified disk. 

- Enter the starting and ending addresses of the block to be saved and the execution address with 4-digit 

~ hexadecimal numbers or symbolic label names. When the execution address is omitted, the debugger 

assumes the block starting address as the execution address. 

The figure below shows how the object program block from addresses 7500 to 8FFF is saved to an 

output file with the file name "FUNCTION". 

Symbolic debugger 

7500 * DSFUNCTION I CRI Object ftle "FUNCTION" 
Object program 

~ 
in the default drive. 

R 

Object ftle "TEST" 
8FFF 

in drive FD2. 
Symbol table 

f._ ____ The symbol table is not saved. 

DEB-19 



-V {Yank) Command-

TheY command reads the object file identified by filename into the link area. 

* DY filename I CRI Reads the object file named filename into the link area under loading 

Loading address $7500-SFFF conditions established when the file was saved. 

Execute address $7 5 00 

- Enter the Y command followed by a file name in response to the prompt "* D ". 

- Press I CRI after entering the file name. The debugger then searches for the file named filename. OBJ 

and reads it. 

- The program in the filename.OBJ file is loaded into the link area block between the starting and end­

ing addresses specified when the file was saved with the S command. 

Note: Files opened before theY command is issued are all killed. 

Symbolic debugger 

Object file created by the Y command 
symbolic debugger 

V 
Immediately executable 
object program 

Object file created by the ' 

linker 

Symbolic debugger 

* DY$FD2; 
Object file SAMPLE.OBJ SAMPLE I CRI 
in drive FD2 

V 
Immediately executable 
object program 

Object file TEST .OBJ 
in the default drive * DYTEST I CRI 

DEB-20 



-/(DOS) Command-

The \command executes a built-in DOS command. 11 * D 11 is displayed to prompt for the next com­

mand. 

* D \FREE $FDn I CRI Outputs the number of used and unused sectors on the floppy disk 

in the disk drive indicated by $FDn. 

- Enter the \_· command followed by the desired built-in DOS command in response to the prompt 

" * D". 

- Press the I C R I key; the de bugger then executes the specified DOS command and displays 11 * D 11 to 

prompt for the next command. 

- The XFER and EXEC commands cannot be executed. The RUN command cannot be executed when 

the program to be executed by the RUN command is too long. 

-#Command-

Switches the list mode for printout on the printer. 

- Enter the # command in response to the prompt "* D 11
• 

- The debugger then switches the list mode. When the debugger is invoked, the printer list mode is set 

to the disable mode. The mode alternates between enable and disable each time a # command is 

entered. In the enable mode, all output is directed to both the screen and the printer (except with the 

M command). 

-!Command-

D! Returns control to Floppy DOS. 

- Enter the ! command in response to the prompt 11 * Dll. 

- Control is then transferred to Floppy DOS. 

DEB-21 



ERROR MESSAGES 

Error message Description Related commands 

o The command operand fields does not match the 4-digit hexa-

??? 
decimal format. 

M,D,W,B,G 
o A symbolic label is missing. 
o A data defining symbol is used as a label. 

o An invalid number of digits was entered when altering register 
Error or memory contents, or a key other than 0 through 9 or A A, C, P,M 

through F was pressed. 

DJNZ? A breakpoint was set for a DJNZ instruction. B 

CALL? A breakpoint was set for a CALL instruction. B 

RST6? A breakpoint was set for a RST 6 instruction. B 

Over An attempt was made to set more than 9 breakpoints. B 

o An attempt was made to access outside the link area. M, D, W, B, G, X 
o The starting address is greater than the ending address. M, D 

? o An attempt was made to clear an undefined breakpoint. B 
o The breakpoint counter was set to F (the maximum permis- B 

sible value is E in hexadecimal). 

Note: Refer to the System Error Messages in the System Command manual for other system error messages. 

DEB-22 


