
Personal Computer

IIIZ·OOOD
Library/Package

SHARP

~...,.......,.....~......._,..~..,..,..._,..,.._,"""'~..,...,._,~...__,...,...._~,......,.~~.._,..~_,...~.._,......,__ ~~~~~~

NOTICE ~
The MZ-80 series of sophisticated personal computers is manufactured by the SHARP ~

I
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini­

ponsible for difficulties arising out of inconsistencies caused by version changes, I
typographical errors of omissions in the descriptions. ~
This manual is based on the SB-1500 series monitor and the SB-7000 series Floppy ~

DOS. ~

)U._,..~..,..,.._,..,.._,...._,......,...............,~....,.....~....._,..,-_~_,.,--.._,..-~ ~~.._,...~,...._,..-,. '"" .._,...-.,_ ,... ~-""'~.._,...._,......._,....._,..~_,....._,.. .. ~-~_,.,. -~~

floppy disk files).
This manual is for reference only and the SHARP CORPORATION will not be res-

--CONTENTS--

USING LIBRARY ROUTINES. 1

MONITOR SUBROUTINES (MONEQU . LIB) . 2

Floppy DOS SUBROUTINES (DOSEQU . LIB) . 7

Outline . 7

CLI (Command Line Interpreter) Subroutines 8

IOCS (Input Output Control System) Subroutines 11

Utility Subroutines. 17

Floppy DOS Common Variables . 24

CLI Intermediate Code Table . 26

BASIC RELOCATABLE LIBRARY (RELO. LIB) 27

Type 1 and Type 2 Character String Formats 31

INDEX OF LIBRARY NAMES . 32

LIB

USING LIBRARY ROUTINES

The Floppy DOS master disk contains three libraries (MONEQU.LIB, DOSEQU.LIB and RELO.LIB).

MONEQU.LIB is a file of monitor subroutine

addresses defined with the EQU statement. That is,

it contains a program such as that shown at right which

has been assembled and converted to the library (.LIB)

mode.

Monitor subroutines are often used when creating

programs with the assembler; in such cases, they are.

used as described below.

First, the subroutine names are written as is (without

~ addresses defmed) as external names when the program

is written. These are then assembled with the assembl­

er. When the assembly listing is reviewed at this time;

the symbol "E" is affixed to indicate that the names

are external names. Next, the program is linked;

MONEQU.LIB is linked at this time also. For example,

2 >LINK GAMEPRG 1, $FD1 ; MONEQU.LIB ~

t_ Program created

MONEQU.LIB must be written last at this time.

WRINF: EQU 021DH

WRDAT: EQU 024EH

RDINF: EQU 025FH

RDDAT: EQU 027DH

VERFY: EQU 0286H

BRKEY: EQU 0527H

PRTHL: EQU 0568H

PRTHX: EQU 056DH

ASCI: EQU 0583H

Part of the contents of MONEQU . ASC

DOSEQU.LIB is a file of subroutine addresses in Floppy DOS which are defined with the EQU state­

ment; it is used in the same manner as MONEQU.LIB. Since MONEQU.LIB is contained in DOSEQU.LIB,

it is only necessary to link DOSEQU.LIB when both monitor and Floppy DOS subroutines are to be used

at the same time.

RELO.LIB is a library of subroutines for programs created with the BASIC compiler. It contains sub­

routines for the four basic arithmetic operations, functional calculations, character string processing, error

message display and many others. In other words, whereas MONEQU.LIB and DOSEQU.LIB are simple

collections of EQU statements, RELO.LIB contains actual subroutines.

When the tinker is used for linkage with RELO.LIB, it is possible to select only the routines required

from the many available for linkage.

RELO.LIB is used in the same manner as MONEQU.LIB and DOSEQU.LIB. Further, the contents

of MONEQU.LIB and DOSEQU.LIB are included in RELO.LIB.

Source programs MONEQU.ASC and DOSEQU.ASC are also included on the master disk along with

MONEQU.LIB and DOSEQU.LIB. It is possible to modify and add to the libraries by regenerating the

source programs to recreate the libraries as necessary.

Note:

Detailed procedures for using DOSEQU.LIB are contained in "LINKING ASSEMBLY PROGRAM

WITH Floppy DOS" in Appendix; see "EX~PLE OF PLOTTER CONTROL APPLICATION" in Pro­

. gramming Utility for details on RELO.LIB.

LIB-1

MONITOR SUBROUTINES (MONEQU.LIB)

"'
Subroutine name Function Registers preserved

(hexadecimal address)

CALL LETNL To change the line and set the sursor to the beginning of the next line.
All registers

(07648) except AF

CALL NL Changes the line and sets the cursor to its beginning if the cursor is not All registers
(0757H) already located at the beginning of a line. except AF

CALL PRNTS
Displays one space only at the cursor position on the display screen.

All registers
(063AH) except AF

Handles data in A register (accumulator) as ASCll code and displays it
CALL PRNT on the screen, starting at the cursor position. However , a carriage return All registers

(063CH) is performed for ODH and the various cursor control operations are except AF
performed for 01H-06H when these are included.

Displays a message, starting at the cursor position on the screen.

CALL MSG
The starting address of the message must be specified in the register

All registers
(06BSH)

pair DE in advance. The message is written in ASCll code and must end
except AF

in ODH. A carriage return is not executed, but cursor control operations
(control codes: 01H to 06H) are performed.

CALL MSGX Almost the same as MSG, except that cursor control codes are for All registers
(06AFH) reverse character display. except AF

CALL BELL
Sounds a momentary tone (approximately 880Hz)

All registers
(OA80H) except AF

Plays musical data . The starting address of the musical data must be
specified in advance in the register pair DE. As with BASIC, the

CALL MELDY
musical interval and the duration of notes of the musical data are
expressed in that order in ASCll code. The end mark must be either All registers

(OAA3H) ODH or 2AH (for the character 11 * 11
). The melody is over if C flag is except AF

0 when a return is made; if C flag is 1 it indicates that I BREAK I
was pressed.

Sets the musical tempo. The tempo data (1 to 7) is set in and called
from A register.

A+- OlH Slowest

CALL XTEMP A +-04H Medium speed

(09BEH) A~07H Fastest All registers

Care must be taken here to ensure that the tempo data is entered in A
register in binary code, and not in the ASCII code corresponding to the
numbers 11 111 to 11 7 11 (31H to 37H).

Sets the built-in clock. (The clock is activated by this call.) The call

CALL TIMST conditions are. All registers

(09CAH) A+- 0 (AM), A +-1 (PM) except AF
DE +- the time in seconds (2 bytes)

CALL TIMRD
Reads the value of the built-in clock. The conditions upon return are: All registers

(OA16H)
A +- 0 (AM), A+- 1 (PM) except AF
DE +- the time in seconds (2 bytes) and DE

"'

LIB-2

Subroutine name Function Registers preserved
(hexadecimal address)

a n

CALL BRKEY Checks whether I BREAK I was pressed. Z flag is set "if it was pressed, All registers
(0527H) and Z flag is reset if it was not. except AF

Inputs one line entered from the keyboard . The starting address in
which the data input is to be stored and the number of characters which
can be input must be specified in advance in the register pair DE and
memory location KNUMBS (OBE3H), respectively. Key input is termi-
nated by pressing the I CRI (or I ENT I) key, at which time end mark

CALL GETL
ODH is stored following the data entered . The maximum number of

(OBESH)
characters which can be input (including the end mark) is 160. The All registers
data input is displayed on the screen. Cursor control , insertion and dele-
tion are accepted. Pressing the I BREAK I key during key input sets
break code OBH at the beginning of the address specified in the register
pair DE and returns control to the caller. This subroutine is also called
by the monitor program with the register pair DE loaded with memory
location BUFER (1100H) and location KNUMBS loaded with 39 (27H).

Takes one character only into the A register from the keyboard. For
example, when this subroutine is called with the[[]key held down,

CALL GETKY ASCII code 42H, corresponding to the character "B ",is loaded into the All registers
(0610H) A register and control is returned. If no key is held down, control is except AF

returned with the A register loaded with OOH.
Key input is not displayed.

CALL CHR40 Sets the number of characters per line on the CRT screen to 40.
All registers except

(098FH) AF ,BC,DE and HL

CALL CHR80 Sets the number of characters per line on the CRT screen to 80.
All registers except

(0958H) AF ,BC,DE and HL

Takes the line on which the cursor is located from the display data.
- The starting address where the data taken is to be stored and the number

CALL GETCRT of characters which can be taken must be specified in advance in the All registers
(OC7CH) register pair DE and memory location KNUMBS, respectively. End mark except AF

ODH is stored automatically following the data. The maximum number
of characters which can be taken (including the end mark) is 160.

CALL PRTHL Displays the contents of the register pair HL on the display screen as a All registers
(0568H) 4-digit hexadecimal number. except AF

CALL PRTHX Displays the contents of the A register on the display screen as a 2-digit All registers
(056DH) hexadecimal number. except AF

~ CALL ASCI Converts the contents of the lower 4 bits of A register from hexadecimal All registers
(0583H) to ASCII code and returns after setting the converted data in A register. except AF

Converts the 8 bits of A register from ASCII code to hexadecimat and
CALL HEX returns after setting the converted data in the lower 4 bits of A register. All registers

(058DH) When C flag= "0" upon return A +- hexadecimal except AF
When C flag = "1" upon return A is not assured.

LIB-3

Subroutine name
Function Registers preserved

(hexadecimal address)

Handles a consecutive string of 4 characters in ASCII code as hexadeci-
mal string data and returns after setting the data in the register pair HL.
The call and return conditions are as follows.

CALL HLHEX .. DE ~ starting address of the ASCII string (e.g._, "3 11 11 1" 11 A 11 11511
) All registers except

(OSA2H) L__DE AF and HL
CALL HLHEX
C flag= 0 HL ~hexadecimal number (e.g., HL=31ASH)
C flag= 1 HL is not assured.

Handles 2 consecutive ASCII strings as hexadecimal strings and returns
after setting the data in A register. The call and return conditions are
as follows.

CALL 2HEX DE ~ starting address of the ASCII string (e.g., I I 3 I I I I A 1 1
) All registers except

(OSBlH) L_DE AF and DE
CALL 2HEX
C flag= 0 A~ hexadecimal number (e.g. , A= 3AH)
C flag= 1 A is not assured.

CALL ??KEY
Awaits key input while causing the cursor to flash. When a key entry is

All registers except
made it is converted to display code and set in A register , then a return

(OD77H)
is made.

AF

Controls the display on the display screen. The relationship between
A register at the time of the call and control is as follows.

A register

OOH Same function as I SHIFT I + []]

OIH Same function as [I]

02H Same function as ITJ
03H Same function as B
04H Same function as B

CALL ?DPCT
OSH Same function as lHOME l

All registers except
(0714H) 06H Same function as ICLR I AF

07H Same function as lDEL l

08H Same function as IINSTI

09H Same function as lGRPH l

OAH Same function as ISFTLOCKI

OBH No control

OCH Same function as IRVS I

ODH Same function as I CR I·

OEH Cancels the GRAPHIC .and SHIFT LOCK key input
mode

OFH Cancels the REVERSE key input mode

LIB-4

Subroutine name
(hexadecimal address)

CALL ?PONT
(09048)

CALL WRINF
(021DH)

CALL WRDAT
(024EH)

CALL RDINF
(025FH)

CALL RDDAT
(027DH)

CALL VERFY
(02868)

CALL PUSHR
(ODFlH)

CALL PUSHR2
{ODFDH)

Function

Sets the current position of the cursor on the display screen in register
pair HL. The return conditions are as follows.

CALL ?PONT
HL ~ cursor position on the display screen (V-RAM address)

(Note) The X-Y coordinates of the cursor are contained in DSPXY
(1 OD 1 H). The current position of the cursor is loaded as
follows.

LD HL, (DSPXY) ; H ~ Y coordinate on the screen.
L ~ X coordinate on the screen.

The cursor position is set as follows.
LD (DSPXY), HL

Writes the current contents of a certain part of the header buffer (des­
cribed later) onto the tape, starting at the current tape position.

Return conditions
C flag= 0
C flag= 1

No error occurred_
The I BREAK I key was pressed.

Writes the contents of the specified memory area onto the tape as a
CMT data block in accordance with the contents of a certain part of
the header buffer.

Return conditions
C flag= 0
C flag= 1

No error occurred.
The I BREAK I key was pressed.

Reads the first CMT header found starting at the current tape position
into a certain part of the header buffer.

Return conditions
C flag= 0 No error occurred.
C flag = 1, A = FFH A check sum error occurred.
C flag= 1, A =I= FFH The I BREAK lkey was pressed.

Reads in the CMT data block according to the current contents of a
certain part of the header buffer.

Return conditions
C flag = 0 No error occurred.
C flag= 1, A= FFH A check sum error occurred.
C flag= 1, A =F FFH The I BREAK l key was pressed.

Compares the first CMT header found starting at the current tape posi­
tion with the contents of the memory area indicated by the header.

Return conditions
C flag = 0 No error occurred.
C flag = 1, A = FFH A match was not obtained.
C flag= 1, A =I= FFH The I BREAK I key was pressed.

Pushes registers IX, HL, DE and BC. The RET instruction at the end of
this subroutine then automatically POPs these registers.

SUBR : CALL PUSHR

RET Z

RET

; POP and RET
if Z flag= 1

; POP and RET

Pushes registers IX, HL and BC. The RET instruction at the end of
this subroutine then automatically POPs these registers.

SUBR2 : CALL PUSHR2

RET z

RET

; POP and RET
if Z flag= 1

; POP andRET

LIB-5

~ Registers preserved

All registers except
AF and HL

All registers
except AF

All registers
except AF

All registers
except AF

All registers
except AF

All registers
except AF

All registers
except IX

All registers
except IX

(Note) The contents of the header buffer at the specific addresses are as follows. The buffer starts at

address 1180H and consists of 128 bytes.

Address

IBUFE
(1180H)

m ut
(1181H)

IBU18
(1192H)

IBU20
(1194H)

IBU22
(1196H)

IBU24
(1198H)

Example
Address

1180
1181
1182
1183
1184
1185
1186
1187
1188
1191
1192
1193
1194
1195
1196
1197

c

Contents

This byte indicates one of the following ftle modes.
01H Object ftle (machine language program)
02H BASIC text ftle

03H

04H
AOH

{

BASIC data flle
PASCAL interpreter data ftle
Source me (ASCll ftle)
Relocatable me (relocatable binary me)
PASCAL interpreter text me

These 17 bytes indicate the ftle name. However, since ODH is used as the end mark, in
actuality the ftle name is limited to 16 bytes.

Example: ffi] [AJ 1Ml [£] [J [El I 0 Dl

These two bytes indicate the byte size of the data block which is to follow.

These two bytes indicate the data address of the data block which is to follow. The loading
address of the data block which is to follow is indicated by "CALL RDDAT". The starting
address of the memory area which is to be output as the data block is indicated by "CALL
WRDAT".

These two bytes indicate the execution address of the data block which is to follow.

These bytes are used for supplemental information, such as comments.

Content
01 ; indicates an object ftle (machine language program)

's' ; the ftle name is' SAMPLE'.
'A'
'M'
'P'
'L'
, E'

OD

} Variable

00
f ; the size of the ftle is 2000H bytes.

20
00

f ; the data address of the ftle is 1300H.
13
60

f ; the execution address of the file is 1360H.
13

LIB-6

. .

Floppy DOS SUBROUTINES (DO~EQU. LIB)

-Outline-

Floppy DOS subroutines can be broadly divided into three groups. That is,

1. CLI (Command Line Interpreter) subroutines

2. IOCS (Input Output Control System) subroutines

3. Utility subroutines

CLI subroutines are used to translate command lines appearing within user programs. That is, when

programs are called in which switches and arguments appear in appended format (such as RUN PROG/P

FILE 1, FILE2l CRI), these subroutines translate those switches and arguments.

~ IOCS subroutines are used to open and close files and devices. Utility subroutines are other general

purpose subroutines.

Command lines are strings of characters (which have been converted to intermediate code) which are

input from the keyboard as DOS commands or other character strings in the same format. In the expla­

nation below, except where otherwise indicated, command lines appear in intermediate code. See the table

on page 26 for the intermediate code.

LIB-7

-CLI {Command Line Interpreter) Subroutines-

TRS10

Function: Converts DOS command lines written in ASCIT code into intermediate code.

Input registers: The HL register contains the starting address of the command line written in ASCII

code. The DE register contains the starting address of the area storing the command

line converted to intermediate code.

Calling procedure: CALL TRSlO

Output register: CF = 0 Normal

CF = 1 Error (A ~ error code)

Note: See the "System Error Messages" in System Command for details. The same applies below.

Registers preserved: All registers except AF .

. CLI {Command Line Interpreter) Example of use (DATE/P)

Function:

Input registers:

Calling procedure:

Output registers:

Translates and executes DOS

command lines.

The HL register contains the

command line pointer.

LD DE, (RJOB)

PUSH DE

CALL .CLI

POP HL

LD (RJOB), HL

CF = 0 'Normal

CF = 1 Error (A ~ FFH)

Registers preserved: None

LD
LD
PUSH

CALL
POP

LD

JP

·DATE: DEFB
DEFB
DEFB

Caution: The LIMIT, RUN, EXEC and DEBUG commands cannot be executed.

See page 25 for the RJOB.

? HEX {Check Hexadecimal)

HL, DATE
DE, (RJOB)
DE
.CL I
HL
(RJOB), HL
C, ERROR

BlH

88H } Intermediate
code for DATE/P

ODH

Function: Converts a 4-digit hexadecimal data item starting with 11
$ 11 into sixteen bit, binary

notation.

Input registers: HL contains the pointer; it should specify 11 $ ".

Calling procedure: CALL ?HEX

Output registers: CF = 1 Not a hexadecimal number. (A~ 3, and HL are preserved)

CF = 0 a hexadecimal number. (DE ~ data, HL indicates the address

following the hexadecimal number)

Registers preserved: All registers except AF, DE and HL.

LIB-8

? SEP (Check Separator)

Function: Checks whether the contents of the address indicated by the HL register are a sepa­

rator (one of the following: I CRI l._j , : /).

Input registers: Regis_ter HL is the pointer.

Calling procedure: CALL ?SEP

Output registers: CF = 1 Not a separator.A+-3(error code) and the HLregister are preserved.

CF = 0 A separator.

A = 2CH . . . The separator is a space or a comma 11
l._j

11
, " , " (the HL register

then points to the address following the separator)

A= ODH ... The separator is I CR j· or slant "/ 11 (the HL register points to the

separator)

A= 3AH ... The separator is a colon 11. 11 (the HL register points to the

separator)

Registers preserved: All registers except AF and HL.

? GSW (Check Global Switch)

Function:

Input registers:

Calling procedure:

Determines whether the global switch on the command line is correct and, if so,

stores it in the area within Floppy DOS.

The DE register contains the starting address of the switch table. The HL register

contains the command line pointer which points to the global switch.

LD DE,SWTBL

CALL ?GSW

SWTBL : DEFB SWl

)

Output registers:

Registers preserved:

DEFB SW2 Ust of items which may be used as global switches
(these are written in intermediate code, from 0 to a maximum of 5.

DEFB
See page 26)

SWn

DEFB FFH End of table

CF = 1 Error (A+- error code)

CF = 0 Normal. The HL register points to the address following the global

switch.

All registers except AF, DE and HL.

LIB-9

TESW (Test Global Switch)

Function: Determines the presence or absence of the specified global switch. Subroutine

"?GSW" must be called before this subroutine is used.

Input registers: None

Calling procedure: CALL TESW

Output registers:

DEFB global switch

CF= 0

The specified global

switch is present.

CF= 1

The specified global

switch is not present.

Example:

CALL
DEFB
PUSH
CALL

This routine outputs whether or not global
switch/Pis present to the line printer or the
CRT.
TESW
88H
AF
C,MSG

; intermediate code for /P

; displayed on the CRT if the
switch is not present.

POP AF
CCF ; CF +-CF
CALL C, PMSG

Registers preserved: All registers except AF. JP C, ERROR

; Printed on the line printer if
the switch is present.

; indicates a line printer error.

? LSW (Check Local Switch)

Function:

Input registers:

Used to determine the local switch which is attached to the file name on the com­

mand line.

The HL register is the command line pointer which indicates the start of the file

name.

Calling procedure: CALL ?LSW

Output registers: CF = 1 Error (A+- error code)

CF = 0 Normal

ZF = 1 No local switch. (A+- 0)

ZF = 0 Local switch is present. (A+- intermediate code for the local

switch)

Registers preserved: All registers except AF.

Example: Read-opens (ROPEN) a file with logical number 2 if a local switch is not present; if local

switch /0 is present the file is write-opened (WO PEN) with logical · number 3; otherwise, an

error occurs.

L2:

L3:

EXX
LD
EXX
CALL
JP
JR
LD
CALL
JR
CP
LD
JP
LD
CALL
JP

8,4

?LSW
C, ERROR
NZ, L2
C,2
ROPEN
L3
89H
A,8
NZ, ERROR
C,3
WO PEN
C, ERROR

; default file mode .ASC

; logical number 2

; intermediate code for I 0
; error code (illocal switch)

; logical number 3

LIB-10

-IOCS (Input Output Control System) Subroutines-

ROPEN (Read Open)

Runction:

Input registers:

Read-opens a file (including the input/

output device).

HL: Pointer which indicates the start of

the file name.

C : Logical number (see note 3)

B' : Default file mode (see note 1)

Calling procedure: CALL ROPEN

Output registers: CF = 1 Error (A~ error code)

CF = 0 Normal

HL: Pointer (indicates the next separator) ·

B' : File mode (see note 1)

C' : File attribute (see note 2)

L' : Device number

IY: Starting address of the device table

(see note 4)

Registers preserved: Only registers BC, DE and IX.

WOPEN (Write Open)

Fuction:

Input registers:

Write-opens a file (including an input/

output device).

HL: Pointer which indicates the start of

the file name.

C : Logical number (see note 3)

B': Default file mode (see note 1)

Calling procedure: CALL WOPEN

Example (when $FDI ; ABC)

LD HL,FL

LD C, 2 (logical number)
EXX

LD B,4 (. ASC)
EXX

CALL ROPEN

CALL C,ERR (see page 23)
RET c

FL: DEFB 90H ($ FDl)
DEFM ';ABC'

DEFB ODH

Example ($PTP /PE/LF)

LD HL, PTP
LD C, 3 (logical number)
EXX

LD B,4 (. ASC)
EXX

CALL WO PEN

JP C, ERROR

Output registers: CF = 1 Error (A~ error code)

CF = 0 Normal

· PTP : DEFB AlH
DEFB 8FH

DEFB 8CH

($ PTP)
(/PE)

(/LF)

HL: Pointer (indicates the next separator) ·

B' : File mode (see note I)

C' : File attribute (only for "0")

L' : Device number

IY: Starting address of the device table

(see note 4)

Registers preserved: Only registers BC, DE and IX.

LIB-11

DEFB ODH

MODECK (Filemode Check)

Function: Checks whether the file mode indicated in register B' for the file opened is correct or

not.

Input registers: Register B' contains the file mode of the opened file.

Calling procedure: CALL MODECK

DEFB file mode number (see page 26 concerning file modes)

Output registers: CF == 0 The file mode is correct.

CF == 1 The file mode is not correct. A ·+- error code.

Registers preserved: All registers except AF.

(Note 1) The default file mode is the mode which is assumed when no mode is specified in the com­

mand line. The numbers enclosed in parentheses indicate the file mode number. (see page 26.)

Example:

Command line Default file mode Actual file mode

ABC .ASC .ASC (4) .ASC (4)

ABC. LIB .RB (5) . LIB (7)

ABC . OBJ (1) . OBJ (1)
ABC .ASC (4) .ASC (4)

(Note 2) The file attribute indicates the type of tile access, and is expressed as one of the following

ASCll codes.
11 0 11 a file with no attribute.

"R" a file for which reading is inhibited. (Read protected file)

"WII a file for which writing is inhibited. (Write protected file)

"P" a file for which both reading and writing are inhibited. (Permanent file)

However, files with the attribute "P" can be read and written if the file mode is /""\

.OBJ. The EXEC command can be executed if the file mode is .ASC.

Normally, the programmer does not need to be aware of file attributes since they are managed

by Floppy DOS.

(Note 3) Logical file numbers are numbers within Floppy DOS which have a one-to-one correspondence

with physical files opened (including input/output devices). Numbers from 1 to 249 may be

used as logical numbers; however, since programs within Floppy DOS use all of the numbers

from 128 on, user programs should use only the numbers from 1 to 127 to avoid conflict.

(Note 4) An explanation of the device table is contained in "USER CODED I/0 ROUTINES'' in­

Appendix; however, except for special I/0 operations, the programmer . normally does not

need to be aware of the contents of the device table.

LIB-12

GET1L (Get 1 Line)

Function:

Input registers:

Reads in one line from the file whose logical number is specified in the C register.

The line read is one which is terminated with ODH. The data read is stored in the

area indicated by the address in the DE register. The length of the line, including

ODH, must be no more than 128 bytes.

The C register contains the logical number. The DE register contains the address of

the area in which the data is stored.

Calling procedure: CALL GETlL

Output registers: CF = 0 Normal

CF = 1, A = 0 File end

CF = 1, A =I= 0 Error (A~ error code)

IY : Starting addres~ of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

GET1C (Get 1 Character)

Function: Reads one byte from the file whose logical number is specified in the C register.

Input registers: The C register contains the logical number.

Calling procedure: CALL GETlC

Output registers: CF = 0 Normal (A~ data read)

CF = 1, A = 0 File end

CF = 1, A =I= 0 Error (A~ error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

GETBL (Get Block)

Functions:

Input registers:

Calling procedure:

Output registers:

Read data into the address indicated in the DE register from the file whose logical

number is specified in the C register; only the number of bytes of data indicated

in the HL register are read in.

The C register contains the logical number. The DE register contains the address in

which the data is to be stored. The HL register contains the number of bytes of data

to be read.

CALL GETBL

CF = 0 Norm~l } DE ~ address of the next block of data to be read

CF = 1, A= 0 File end HL ~number of bytes of data actually read

CF = 1, A =I= 0 Error (A ~ error code)

IY: Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC and IX.

LIB-13

? EOF (Check End-of-file)

Function: Checks for the end of a read-opened file. Z flag becomes 11 111 when an attempt is

made to read beyond the end of data.

Input registers: The C register contains the logical number. ·

Calling procedure: CALL ?EOF

Output registers: CF = 1 Error (A +- error code)

CF = 0, ZF = 1 Not file end

CF = 0, ZF = 0 File end

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

PUT1C (Put 1 Character)

Function:

Input registers:

Calling procedure:

Output registers:

Outputs one byte of data to the file whose logical number is specified in the C re­

gister.

The C register contains the logical number. The A register contains the data to be

output.

CALL PUTlC

CF = 0 Normal

CF = 1 Error (A +- error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

PUT1L (Put 1 Line)

Function: Outputs the line starting at the address specified in the DE register to the file whose

logical number is specified in the C register. Outputs the ending carriage return.

Input registers: The C register contains the logical number. The DE register contains the starting

address of the data to be output.

Calling procedure: CALL PUTlL

Output registers: CF = 0 Normal

CF : 1 Error (A +- error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-14

PUTBL (Put Block)

Function:

Input registers:

Calling procedure:

Output registers:

Outputs the number of bytes of data indicated in the HL register to the file whose

logical number is specified in the C register, starting at the address indicated in the

DE register.

The C register contains the logical number. The DE register contains the starting

address of the data to be output. The HL register contains the number of bytes of

data to be output.

CALL PUTBL

CF = 0 Normal (DE +-address following the end of the block output)

CF = 1 Error (A +- error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC and IX. (Register HL is also preserved if C flag= 0)

PUTCR (Put Carriage Return)

Function:

Input registers:

Calling procedure:

Output registers:

Outputs a carriage ·return to the file whose logical number is specified in the C

register.

The C register contains the logical number.

CALL PUTCR

CF = 0 Normal

CF = 1 Error (A +- error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

PUTM (Put Message)

PUTMX

Function: Outputs the line starting at the address indicated in register DE to the file whose

logical number is specified in the C register. PUTM and PUTMX operate in the same

manner except for their handling of $CRT and $LPT. Cursor control operations ([}{},

if, etc.) are executed only when PUTM is used; when PUTMX is used, they are only

displayed or printed as reverse characters. The end code (ODH) is not output.

Input registers: The C register contains the logical number. The DE register contains the starting

address of the data to be output.

Calling procedure: CALL PUTM or CALL PUTMX

Output registers: CF = 0 Normal

CF = 1 Error (A +- error code)

IY : Starting address of the device table (see note 4 on page 12)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-15

CLOSE (Close File)

KILL (Kill File)

Function: Closes or kills the file whose logical number is specified in the C register. If this

subroutine is called when the C register contains 0, all currently opened files will be

closed or killed. (This excludes files which were opened by Floppy DOS itself.)

Input registers: The C register contains 0 or a logical number.

Calling procedure: CALL CLOSE or CALL KILL

Output registers: CF = 0 Normal

CF = 1 Error (A +- error code)

IY : Starting address of the device table (see note 4 on page 12)

· Registers preserved: Only registers BC, DE, HL and IX.

LUCHK (LU Number Check)

Function: Checks whether a logical number (contained in the C register) has been defined.

Input registers: The C register contains the logical number.

Calling procedure: CALL LUCHK

Output registers: CF = 1 The logical number has not been defined.

CF = 0 The logical number has been defined.

L' +- device number (see page 26 concerning device numbers)

IY +- starting address of the device table. (see note 4 on page 12)

Registers preserved: All registers except AF, HL, IY, D' and L'.

Example: LD C, 5 ; logical number

CALL LUCHK

JP C, NOTUSE

EXX

LD A,L ; device number

EXX

CP 4

JP C,FD

LIB-16

-Utility Subroutines-

MTOFF (Motor Off)

Function: Stops the motor of the floppy disk drive. (The drive motor is activated automa­

tically when necessary.)

Calling procedure: CALL MTOFF

Registers preserved: All registers except AF.

BREAK (Check Break Key)

Function: Checks whether I BREAK I has been pressed.

Input registers: None

Calling procedure: CALL BREAK

Output registers: CF = 0 Not pressed.

CF = 1 Pressed. (In this event, A+- 37. 37 is the error code.)

Registers preserved: All registers except AF.

HALT (Halt Action with Break Action)

Function: Checks the keyboard and, if the I SPACE I key is pressed, stops execution until the

I SPACE I key is pressed again. If I BREAK I is pressed, A +- 37 and CF +- 1. (37 is

the error code.)

Input registers: None

Calling procedure: CALL HALT

Output registers: CF = 0 Normal

CF = 1 I BREAK I was pressed. (In this event, A+- 37 .)

Registers preserved: All registers except AF.

LIB-17

SGETL (Screen Get Line)

Function:

Input registers:

Inputs one line from the keyboard. The keyboard is provided with the automatic

repeat feature. The line which is actually input is the line in which the cursor is

located when I CRI is pressed; the maximum number of characters which can be

input is 160.

The DE register contains the starting address of the area (80 bytes :cequired) in

which the data is to be stored.

Calling procedure: CALL SGETL

Output registers: CF = 0 Normal

CF = I 1 BREAK I was pressed. A+- 0 (not 37)

Registers preserved: All registers except AF.

LTPNL (Let Printer New Line)

PMSGX (Printer Message X)

PMSG (Printer Message)

PPRNT (Printer Print)

PPAGE (Printer Page)

Function: These are printer control routines. Each routine performs the same function for the

printer as does the corresponding monitor subroutine shown below for the CRT.

I Printer I ICRTI
LTPNL LETNL
(carriage return)
PMSGX MSGX
PMSG MSG
PPRNT PRNT
PP AGE

Output registers: CF = 0 Normal

CF = 1 Error (A +- error code)

Registers preserved: All registers except AF and IY.

LIB-18

~
C&L1
&NL
&PRNT
&NMSG
&MSG
&1L

Function:

C&Ll

Each subroutine directs output to the printer or CRT depending on the presence or

absence of the global switch (/P). &NL, &NMSG and & 1 L include the HALT func­

tion (see page 17 for the HALT function).

Prepares either the printer or the CRT. This routine must be called before any

other routines are used. Further, "?GSW'' must be called before this routine is

called.

&NL Performs the same function as LETNL.

&PRNT Performs the same function as PRNT.

&MSG Performs the same function as MSG.

&NMSG , : : Executes &NL, then executes &MSG.

&IL Executes &MSG, then executes &NL.

Output registers: CF = 0 Normal

CF = 1 Error (A +- error code)

Registers preserved: All registers except AF and IY.

See "LINKING ASSEMBLY PROGRAM WITH Floppy DOS" in Appendix for an example of use.

LIB-19

CHKACC (Check Ace)

Function: Checks whether the contents of A register (accumulator) match any of several

different given data items.

Input registers: A contains the data items to be checked.

Calling procedure: CALL CHKACC

DEFB n

DEFB data 1

DEFB data 2

DEFB data 3

DEFB data n

; number of data items (1-255)

n items of data to be compared

DEFM ' ' may be used with ASCII.

Output registers: ZF = 1 One of the data items matches the contents of A.

ZF = 0 No match was found.

Registers preserved: All reg_isters except the flags.

MULT (Multiply)

Function: Multiplies the contents of the DE register and the HL register (handling them as 16-

bit unsigned integers) and places the result in the DE register.

Input registers: DE, HL

Calling procedure: CALL MULT

Output registers: CF = 1 Overflow (result cannot be expressed in 16 bits)

CF = 0 Normal. The DE register contains the result of the calculation.

Registers preserved: All registers except AF, DE and HL.

SOUND (Warning Sound)

Function: Produces the sound "AO+ARA+AR" to indicate that an error has occurred.

Calling procedure: CALL SOUND

Registers preserved: All registers.

LIB-20

BINARY (Convert ASCII to Binary)

Function: Converts an ASCII numeric string into .a 16-bit unsigned integer.

Input registers: The HL register contains the starting address of the ASCII numeric string.

Calling procedure: CALL BINARY

Output registers: CF = 1 Overflow (cannot be expressed within 16 bits)

CF = 0 Normal. The DE register contains the converted data. The HL re­

gister contains the address following the end of the numeric string.

If the ASCII characters indicated by HL are not a numeric string,

CF +- 0 and DE+- 0.

Registers preserved: All registers except AF, DE and HL.

Example: LD HL, BUFFER

CALL BINARY

JP C, ERROR

BUFFER: DEFM ' 1024'

DEFB ODH

CASCII (Convert Binary to ASCII)

; if CF = 0, DE becomes 400H.

HL points to ODH.

; must be an ASCll code for other than ' 0 ' - ' 9 '.

Function: Converts a 16-bit unsigned integer into an ASCII numeric string.

Input registers: The HL register contains the 16-bit unsigned integer. The DE register contains the

address of the area in which the ASCII numeric string is to be stored.

Calling procedure: CALL CASCIT.

Output registers: The DE register contains the ,ending address of the ASCII numeric string obtained.

Registers preserved: All registers except AF and DE.

Example: LD HL, 1024

LD DE,BUFFER

CALL CASCII

BUFFER: DEFS 10

LIB-21

; after conversion the ASCll numeric string ' 1024 '

is stored.

CLEAR (Clear Area)

Function: Loads a continuous area in the memory with zeros. (The memory area must be 255

bytes or less.)

Input registers: None

Calling procedure: CALL CLEAR

Output registers:

DEFB length

DEFW address

None

Registers preserved: All registers.

CHLDE (Compare HL, DE) ·

; number of bytes to be cleared.

; the memory is cleared starting at this address.

Function:

Input registers:

Compares the contents of the HL register with the contents of the DE register.

HL and DE

Calling procedure: CALL CHLDE

Output registers: FLAG~ HL- DE; that is CF = 0, ZF = 0 HL >DE

CF = 1, ZF = 0 HL < DE

CF = 0, ZF = 1 HL = DE

Registers preserved: All registers except AF.

LCHK (Limit Check)

Function: Compares the last usable memory area (the address indicated by the~ stack pointer

minus 256) with the contents of the HL register.

Input registers: HL

Calling procedure: CALL LCHK

Output registers: CF = 0 HL < = SP-256

CF= 1 HL>SP-256

At this time, A ~ 21. 21 is an error code. (memory protect error)

Registers preserved: All registers except AF.

LIB-22

~

ERR {Display Error Message)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

ERRX

Function:

Input registers:

Displays an error message (see the System Error Messages in System Command

for details). The contents of the C register and the IY register must be preserved

from tb.e time the error occurs until this routine is called. Further, the CLOSE or

KILL routine must not be called during that time (otherwise, the contents of the

error message may be incorrect).

The A register contains the error code (no error message is output if the error code

is FFH).

The C register contains the logical number.

The IY register contains the starting address l These may not be necessary depending
on the type of error.

of the device table (see note 4 on page 12)

CALL ERR

A+- FFH Example:

CF +- 1 CALL SGETL (Page 18)
CALL NC, & lL (Page 19)

All registers except AF. JR NC, -6

CALL C, ERR

RET c

This function displays a colon (11
:

11
), followed by the contents of the area from the

address following a specified ODH until the next ODH; the specified ODH is the one

which is the (ACC-1)th from the address indicated in the DE register.

The DE register contains the starting

address of the message block.

The A register contains a number

(1-255).

Example:
ERMSG: DEFM 'SYNTAX'

DEFB ODH

DEFM 'OVERFLOW'

Calling procedure: CALL ERRX DEFB ODH

Output registers: A+- FFH

CF +- 1

Registers preserved: All registers except AF.

ERWAIT
{Display Error Message and Wait Space Key)

Function: 1. Calls subroutine ERR if A =1= 0.

DEFM 'ILDATA'

DEFB ODH

LD A, 2

LD DE, ERMSG

CALL ERRX

This displays ' : OvERFLOW '.

2. Displays the contents of the area starting with the address indicated in the DE re­

gister until ODH.

3. Displays 11
, .0. space key 11 if A = 0.

4. Waits until i·SPACE lor I BREAK I is pressed.

Input registers: A and DE

Calling procedure: CALL ERWAIT

Output registers: CF = 0 I SPACE I was pressed.

CF = 1 I BREAK I was pressed. (A+- 37)

Registers preserved: All registers except AF.
LIB-23

-Floppy DOS Common Variables­

LIMIT (limit of Memory)

Number of bytes: 2

Meaning: Contains the last address plus one of RAM mounted.

ISTACK (Initial Stack Pointer)

Number of bytes:

Meaning:

ZMAX

Number of bytes:

Meaning:

Caution:

2

Contains the last address plus one of the memory area which is available to Floppy

DOS. This data is used by Floppy DOS for initialization of the stack pointer. The

contents of ISTACK may be changed by the Floppy DOS LIMIT instruction. The

contents of ISTACK must not be changed by any other means.

2

Contains the last address of the area being used by Floppy DOS (excluding the

stack). The contents of ZMAX may be changed depending on the next subroutine

called. (ROPEN, WOPEN, CLOSE, KILL, .CLI)

The area which may be used within the user program as free area is as follows.

1. [Lowest address]= [value contained in ZMAX when the user program was

entered]

+ [number of files which are simultaneously opened

(ROPEN or WOPEN)] x 350

+ [number of files which are simultaneously write-opened]

x72 ~

+ [number of floppy disk units used] x 128

[Maximum address]= [stack pointer (SP)] -a, a is approximately 256.

2. From 1ST ACK to LIMIT - 1.

3. Area reserved by the DEFS statement within the assembly program.

LIB-24

.DNAME {Default File Name)

Number of bytes:

Meaning:

17

The file name and succeeding ODH contained in this area will be used as the default

file name when the file name is omitted. For example, when this area contains
11 ABCD I CRI" , "$FD3" appearing on the command line will be interpreted as

"$FD3;ABCD 11
•

BDRIVE {Boot Drive)

Number of bytes:

Meaning: Contains the default drive number minus 1 (0- 3). The default drive number is the

number which appears to the left of the prompt 11 > 11 when FDOS is in the com­

mand wait state.

MAXDVR {Maximum Drive)

Number of bytes:

Meaning:

TODAY

Number of bytes:

Meaning:

Contains the number of floppy disk dirves connected (1-4).

7

Contains the month, day and year followed by ODH; each element of the date is

indicated with a two-digit ASCII code.

RJOB {Running Job Pointer)

Number of bytes:

Meaning:

2

Area which indicates how far command line interpretation has proceeded. When

command lines are interpreted in a user program, the address following that of the

last command line interpreted must be placed in RJOB.

LIB-25

-CL I Intermediate

I Switch I
ASCll Intermediate

code

80H

/D 81 H

/C 82H

/E 83 H

/G 84H

/L 85 H

/N 86H

/S 87H

)P 88H

/0 89H

/T 8AH

8BH

/LF 8CH

/PN 8DH

/PO 8EH

/PE 8FH

I Built-in commands I
ASCll Intermediate

code

RUN BOH

DATE B1H

XFER

DIR

RENAME

DELETE

TYPE

CHATR

FREE

MON

TIME

EXEC

POKE

B2H

B3H

B4H

BSH

B6H

B7H

B8H

B9H

BAH

BBH

BCH

BDH

BEH

BFH

COH

CONSOLE C1H

Other

Code Table-

I Device name I
ASCll Device number

$FD1 0

$FD2 1

$FD3 2

$FD4 3

$CMT 4

$MEM 5

6

7

8

9

$PTR 10

11

$K.B 12

$SIA 13

$SIB 14

15

ASCll Intermediate
code

KEY C2H

KLIST C3H

BOOT C4H

FAST CSH

REW C6H

Intermediate
code

90H

91 H

92H

93 H

94H

95 H

96H

97H

98H

99H

9AH

9BH

9CH

9DH

9EH

9FH

ASCll Device number Intermediate
code

$LPT 16 AOH

$PTP 17 A1H

$CRT 18 A2H

19 A3H

$SOA 20 A4H

$SOB 21 ASH

22 A6H

23 A7H

$USR1 24 A8H

$USR2 25 A9H

$USR3 26 AAH

$USR4 27 ABH

28 ACH

29 ADH

30 AEH

31 AFH

l File mode I
ASCII File mode number Intermediate

code

·*
.OBJ

.BTX

.ASC

.RB

. LIB

.SYS

255

2

3

4

5

6

7

8

9

10

11

12

13

14

FOH

F1H

F2H

F3H

F4H

FSH

F6H

F7H

F8H

F9H

FAH

FBH

FCH

FDH

FEH

FFH

Codes other than those shown in this table are expressed as is in ASCll code. However, this applies only

to 0 I H-7FH. The codes for some small characters and graphic characters are the same as CLI intermediate

codes; therefore, they cannot be used.

LIB-26

~

~

BASIC RELOCATABLE LIBRARY (RELO.LIB)

The basic relocatable library contains a collection of subroutines which are required by programs

created using the basic compiler. These routines are useful when basic program subroutines (external func­

tions, external commands, etc.) are created using the assembler.

Routines contained in RELO . LIB can only be used as basic subroutines; they cannot be executed as

independent assembly programs .

. . INTO

. . INT1

. . INT2 (Convert Floating to Fixed)

Function: Converts a real number expressed in 5 bytes into a 16-bit integer. The absolute value

or any decimal fraction is discarded. (Examples: 1.5--* 1 -2.7--* -2)

.. INTO The input range i~ from -32768 "V 32767

.. INTl The input range is from 0 "V 255

.. INT2 The input range is from -32768"" 65535

Input registers: The HL register contains the starting address of the 5 byte real number.

Calling procedure: CALL .. INTO CALL .. INTl CALL .. INT2

Output registers: HL ~integer

Error processing: .. INTO Upon overflow, CF ~ 1.

.. INT 1 Upon overflow, JP ER3 .

. . INT2 Upon overflow, CF ~ 1.

Registers preserved: All registers except AF and HL.

Note: The .. FLTO .and CONST subroutines (described below) are used to create the 5-byte real number .

. . FLTO (Convert Fixed to Floating)

Function:

Input registers:

Converts a 16-bit signed integer into a 5-byte real number.

The HL register contains the 16-bit signed integer. The DE register contains the

staring address of the area in which the real number is stored.

Calling procedure: CALL .. FLTO

Registers preserved: All registers except AF, DE and HL.

LIB-27

CASC' (Change ASCII)

Function: Converts a 16-bit unsigned integer into an ASCll character string and appends ODH

to the end of it.

Input registers: The HL register contains the 16-bit unsigned integer. The DE register contains the

starting address of the area in which the ASCll character string is stored.

Calling procedure: CALL CASC'

Registers preserved: All registers except AF .

. MOVE' (Move String)

Function:

Input registers:

Calling procedure:

Output registers:

Converts a character string from type 1 to type 2. The converted character string

is stored in an area called .WORD. (The type 1 and type 2 character string formats

are explained on page 31.)

The HL register contains the starting address of the character string (type 1).

CALL. MOVE'

The DE register contains the starting address of the converted character string.

(The address of .WORD)

Registers preserved: All registers except AF, BC, DE and HL.

FASCX (Convert Floating to ASCII)

Function:

Input registers:

Converts a 5-byte real number into an ASCIT character string and appends ODH to

the end of it.

The HL register contains the starting address of the real number. The DE register

contains the starting address of the area in which the ASCll character string is

stored.

Calling procedure: CALL FASCX

Registers preservec: None

LIB-28

CONST (Convert ASCII to Const)

Function:

Input registers:

Converts a constant expressed in ASCll code into a 5-byte real number.

The HL register contains the starting add:ress of the constant expressed in ASCII

code. The DE register contains the starting address of the area in which the result

is stored.

Calling procedure: · CALL CONST

Output registers: The HL register contains the first address following the constant converted.

Registers preserved: None

Error processing: JP ER3

CHCOND (Character Condition)

Function:

Input registers:

Compares the two character strings (type 1.)

The HL and DE registers contain the strarting addresses of each of the two character

strings being compareq.

Calling procedure: CALL CHCOND

Output registers: FLAG+- (DE)- (HL)

that is,

CF = 0, ZF = 0 (DE)> (HL)

CF = 1, ZF = 0 (DE)< (HL)

CF = 0, ZF = 1 (DE) = (HL)

Registers preserved: All registers except AF, BC, DE and HL.

ER1 ER13
ER2 ER14
ER3 ER21
ER4 ER24
ER5 ER37
ER6 ER64

Function: Error message

Error Message

rately).

display routine used during BASIC program execution. See the

table in the BASIC compiler instruction manual (available sepa-

Calling procedure: JP ER1 (SYNTAX ERROR), etc.

LIB-29

BEERR (Basic Executing Error)

Function: Error message display routine used during BASIC program execution.

Calling procedure: CALL BEERR

DEFB error code (error number in BASIC)

DEFM ' ERROR MESSAGE '

DEFB ODH

~No return made.

BABORT (Basic Abort)

Function:

Input registers:

Calling procedure:

Example:

Caution:

When a system error occurs during BASIC program execution, this routine displays

the applicable error message and interrupts execution.

The A register contains the error code (system error number).

The C register is the logical number.

The IY register contains the starting address

of the device table (see note 4 on page 12).

JP BABORT

LD C, 2

CALL GETlC

JP C, BABORT

}

May not be required depending

upon the type of error.

BEERR is a routine which displays *ER nn: message in linen umber (where nn is

the error number in BASIC compiler) when an error occurs in a BASIC program;

BABORT is a routine which displays -ERR message in linenumber when an error

occurs at the Floppy DOS level. ON ERROR processing will be performed in both

cases, if specified.

LIB-30

. . STOP

Function: Interrupts BASIC program execution. (Corresponds to the STOP instruction of the

BASIC compiler.)

Calling procedure: JP .. STOP

... END

Function: Terminates BASIC program .execution. (This corresponds to the END instruction

of the BASIC. compiler.)

Calling procedure: JP ... END

.WORD

Function: 257-byte general purpose area.

-Type 1 and Type 2 Character String Formats-

There are two types of character strings which are handled by BASIC; these should be used as appropriate.

Type I

DEFB length (character string length: 0"' 255)

DEFM'

Type 2

DEFM ' '

DEFB ODH

LIB-31

INDEX OF LIBRARY NAMES

Name Type Page Name Type Page Name Type Page

&1L UTYL 19 CONST RELO 29 MSG MON 2
&MSG

,
19 ER1 " 29 MSGX " 2

&NMSG
,

19 ER2 " 29 M TOFF UTYL 17
&NL

,
19 ER3 11 29 MULT 11 20

&PRNT
,

19 ER4
,

29 NL MON 2

... END RELO 31 ER5
,

29 PMSG UTYL 18

.. FLTO " 27 ER6 11 29 PMSGX " 18

.. INTO
,

27 ER13 11 29 PP AGE 11 18

.. INT1 " 27 ER14
,

29 PPRNT 11 18

.. INT2
, 27 ER21 " 29 PRNT MON 2

. . STOP , 31 ER24 11 29 PRNTS
,

2

. CLI CLI 8 ER37 11 29 PRTHL " 3

. DNAME VAR 25 ER64
,

29 PRTHX 11 3
. MOVE' RELO 28 ERR UTYL 23 PUSHR 11 5
.WORD

, 31 ERRX 11 23 PUSHR2 " 5
2HEX MON 4 ERWAIT

,
23 PUT1C IOCS · 14

??KEY
,

4 FASCX RELO 28 PUT1L
,

14
?DPCT " 4 GET1C IOCS 13 PUTBL 11 15
?EOF IOCS 14 GET1L

,
13 PUTCR 11 15

?GSW CLI 9 GETBL 11 13 PUTM 11 15
?LSW 11 10 GETCRT MON 3 PUTMX 11 15
?HEX ,

8 GETL " 3 RDDAT MON 5
?PONT MON 5 GETKY 11 3 RDINF

,
5

?SEP CLI 9 HALT UTYL 17 RJOB VAR 25
ASCI MON 3 HEX · MON 3 ROPEN IOCS 11
BABORT RELO 30 HLHEX

,
4 SGETL UTYL 18

BE ERR 11 30 IBU1 11 6 SOUND 11 20
BELL MON 2 IBU18 " 6 TESW CLI 10
BDRIVE VAR 25 IBU20

,
6 TIMRD MON 2

BINARY UTYL 21 IBU22 11 6 TIMST 11 2

BREAK " 17 IBU24 " 6 TODAY VAR 25

BRKEY MON 3 IBUFE 11 6 TRS10 CLI 8

C&L1 UTYL 19 !STACK VAR 24 VERFY MON 5

CASC' RELO 28 KILL IOCS 16 WO PEN IOCS 11

CASCII UTYL 21 LCHK UTYL 22 WRDAT MON 5

CHCOND RELO 29 LETNL MON 2 WRINF 11 5

CHKACC UTYL 20 LIMIT VAR 24 X TEMP
,

2

CHLDE 11 22 LTPNL QTYL 18 ZMAX VAR 24

CHR80 MON 3 LUCHK IOCS 16

CHR40 " 3 MAXDVR VAR 25

CLEAR UTYL 22 MELDY MON 2

CLOSE IOCS 16 MOD ECK IOCS 12

Type : MON Monitor subroutine
CLI CLI subroutine } -
IOCS IOCS subroutine Fl DOS b ·
UTYL U il. b · oppy su routmes t 1ty su routme
V AR Floppy DOS common variable subroutine
RELO BASIC relocatable library

LIB-32

