Personal Computer

ms-cE08

Z-80 Assembler

SHARP

i
!
g
¥
5
5
I

R e e A e e e Lo T

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.

This manual is based on the SB-1500 series monitor and the SB-7000 series Floppy
DOS.

L e e T T T e e S X

B el e e R e A e L n:«'o»\z—stmW\%_é

— CONTENTS —

-

Q

o)

=

INTRODUCTION ... e e 1)

7))

(7p)

ASSEMBLY LANGUAGE RULES 3 <C

Charactersottt it 4 (@)

Li 5 op

1 o= N
Label Symbols oo 5
ConStants . ..ot e 6
ASSEMBLY LISTING AND ASSEMBLER MESSAGES 7
Definition Condition Messages ' uu.. ... 8
Error Messages 8
ASSEMBLER DIRECTIVES e 10
ENT (entry) . ..ot e e e e e e 10
EQU (equate)t e e 11
ORG (OTigIN) . ot ittt e e e e e e e e e e e e 12
DEFBn (definebyte) 13
DEFB’S’, DEFB "S" (define byte) 13
DEFW nn’ (defineword)0 iiiiiiiniinn.. 14
DEFM ’S’, DEFM "S" (define message)uuuuunun... 14
DEFS nn’ (define storage) 15
SKPn(skipnlines)o.uinininiiiniii i, 16
SKPH (skiphome)t i 16
END (end)t 16
MESSAGE TABLE i 17

ASM

2TATIYO

32

s 5
LR

s i
AT HEL0 TN
45451

()

)

N INTRODUCTION

‘The assembler translates a source file written in assembly language to generate a relocatable binary file;
the source file is one which has been generated and edited by the text editor, and the relocatable binary
file is an intermediate file between the source file and object file. It is possible to link several relocatable

files by the linker.

The assembly source file is coded in assembly language. It consists of labels, mnemonic operations
codes, assembler directives, comments and an end directive; these are arranged according to the rules of the
assembler. The source file edited by the editor is written in ASCII code. The assembler translates the
source file to generate a relocatable file and outputs messages which indicate definition conditions and
syntax errors. These messages are included in the assembly listing which is displayed on the CRT or

printed on the printer.

The following DOS commands activate the assembler.

e ASM SAMPLE
Activates the assembler., The assembler translates source file SAMPLE.ASC and generates relocatable
file SAMPLE.RB.

e ASM SAMPLE, $LPT/L, $CRT/E
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable file

SAMPLE.RB, prints the assembly listing on the printer and display only erroneous lines and external

reference lines of the CRT screen.

e ASM/N SAMPLE, $SOA /L
Activates the assembler. The assembler translates source file SAMPLE.ASC and outputs the assembly
listing to serial output port A ($SOA), but does not generate a relocatable file since global switch/N

is specified.

e ASM SAMPLE, $FD3; SAMLIST /L
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable

file SAMPLE.RB and outputs the assembly listing in the same form as that printed on the printer to
SAMLIST.ASC on FD3 in ASCII code.

e ASM SAMPLE, SLPT/L, $4000
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB and prints the assembly listing on the printer with a bias of $4000 added to the
— relocatable address. Relocatable file is not affected by the bias of $4000.

ASM-1

http:SAMPLE.RB
http:SAMPLE.RB
http:SAMPLE.RB

The assembler basically uses a 2-pass system. A pass is the process in which the assembler reads a source

file from its beginning to end. The following shows operation of the assembler with the 2-pass system.

Floppy DOS
Assembler source | PASS 1 Assembler
File (ASCII)

Symbol table
Assembler source | PASS2 AT
file (ASCII) — S

ymbol table

V' symbol tabl

Relocatable file

(RB)

CRT screen or

During pass 1, the assembler stores label
symbols according to the assembler rules in the
symbolic label table. Label symbols help the
operator to read and understand the program
easily.

During pass 2, the assembler generates a
relocatable file with reference to the symbol
table generated during pass 1, then outputs the
assembly listing (on the CRT or printer).

The relocatable file and the assembly listing
do not occupy space in RAM, which is only
used by the symbol table. Therefore, the size
of the source file to be assembled is not limited
by the amount of RAM.

The following program list will help you understand the function of the assembler. This program is

only for reference and has no meaning.

K> Z80 ASSEMBLER SB-7201 <A> PAGEOl

01 0000 :
02 0000 ; SAMPLE LIST
03 0000 ;
04 2000 ORG 2000H
05 2000 3E33 LD A3’
06 2002 FEA43 CP 43H
07 2004 FE43 CP el
08 2006 FEO05 CP T
09 2008 22 DEFB
10 2009 27 DEFB
11 200A 43 DEFB el
12 200B 02 DEFB 4
13 200C 06050201 DEFM 'CHEY &=
14 2010 0304
15 2012 7E LD A, (HL)
16 2013 7E LD '
17 2014 ;
18 2014 ;
19 2014 P XYZ: EQU 10
20 2014 C32120 JP ABC+XYZ
21 2017 C30A00 ABC: JP XYZ
22 201A C31420 JP ABC-3
23 201D C30A00 JP 10
24 2020 C32A20 JP +10
25 2023 2100D0 LD HL, D000
26 2026 213930 LD HL, 12345
27 2029 212120 LD HL, ABC+XYZ
28 202C 3EOD LD A, XYZ+3
29 202E 3EFF LD A -1
30 2030 21FFFF LD HL, -1
31 2033 21FOFF LD HL, —-10H
32 2036 C33520 JP -1
33 2039
34 2039 CD4A20 CALL 222
35 203C CD5420 CALL ZZZ+10
36 203F CDA4B20 CALL ZZZ+XXX
37 2042 21FFFF LD HL, —-XXX
38 2045 21FEFF LD HL, ~XXX—XXX
39 2048 4920 DEFW Z2ZZ-XXX
40 204A 00 227: NOP
41 204B P XXX: EQU 1
42 204B END

X >k Z80 ASSEMBLER SB-7201 <A> PAGE 02
ABC 2017 XXX 0001 XYZ 000A ZZZ 204A

?2/?2/2?

; M may be used in place of (HL).

; Relocatable address + EQU defined aymbol value.

; Absolute address 10
; Relative address 2AH (20H+10)
; Handled as a hexadecimal number.

; EQU defined label value + numerica data
; Negative value is converted into one’s complement.

?2/72/??

; Indicates the contents of the symbol table.

N ASSEMBLY LANGUAGE RULES

The source program must be coded according to assembly language rules. This paragraph describes the

structure of the source program and the assembly language rules.

The assembly source program consists of the following.

Z80 instruction mnemonic codes

Label symbols
Comments

Definition directives
Assembler directives Entry directives

(Pseudo instructions) Skip directives

End directive

Comments may be used as needed by the programmer; they have no effect on execution of the program
and are not included in the relocatable file.

All assembly source programs must be ended with the assembler directive END.

Z80 instruction mnemonic codes from the body of the assembly source program. These are explained
in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma, etc.) and
operands.

A label symbol symbolically represents an address or data. A label symbol is either placed in the label
column and separated from the following instruction with a colon (:), or placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used) are

= ignored. Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for
separators and special symbols may be used.

Comments are written between the separator ' ;" and a code; these have no influence on program
execution.

Assembler directives will be explained later in this manual. These are written in the same column as the
Z80 instruction mnemonic codes.

An END directive is one of the assembler directives; all assembly source programs must end with this
directive.

ASM-3

—Characters—

Characters which are used in an assembly source program are alphanumerics, sepecial symbols and other
characters. The special symbols have functional meanings. (Separators, ,[SPACE], etc.)
1) Alphabetic characterss: ABCDEFGHIJKLMNOPQRSTUVWXYZ
These characters are used to represent symbols and instruction mnemonic codes. A ~ F are also used
for representing hexadecimal values. Further, D is used to indicate decimal and H is used to indicate
hexadecimal.
2)Numerics: 0123456789
These are used to represent constants and symbols. Whether a constant is a hexadecimal number or a
decimal number is determined according to the rules of constants.
3) Space
Spaces are treated as separators except when they are used in comments. They perform the tabulation
function on the assembly listing when they are placed between op-code and operand or between ope-

rand and comment as shown below:

Example: OR FOH[SP]; A<-X0
XYZ : PUSH[SP]AF Editor list
ADD HL, BC [SP]; BC = COUNT
3
OR FOH ; A<-XO0
XYZ: PUSH AF Assembly listing
ADD HL,BC ; BC = COUNT
t t

Tab set Tab set
4)Colon " : "
A colon behaves as a separator when it is placed between a label symbol and an instruction. It performes
the tabulation function on the assembly listing.

Example: START: LD SP, START
MAIN: ENT
t t
Tab set Tab set

An address is assigned to the label symbol even if no instruction follows. (See the prargraph on symbols.)

Example: ENTRY: <"ENTRY "is assigned the same address as'' TOPQ".
TOPO: PUSH HL

5)Semicolon " ;"
A semicolon represents the beginning of a comment. None of the characters between a semicolon and a
code have any influence on execution of the program. The semicolon is placed at the top of a line
or the beginning of a comment column.

Example: ;
; SAMPLE PROGRAM All lines are comments.

CMMNT: ENT ; COMMENT

N — e e
Comment column

ASM-4

6) Carriage return ()
A carriage return code represents the end of a line.
7) Other special symbols: +—"(),
All these are special symbols used in instructiln statements,
8) Other symbols
Other characters are not generally used, although they may be used as symbol labels or in the comment

column.

—Line—

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage
return. Except for comments, each line includes only one of the Z80 instructions, an assembler directive,
an end statement or an empty statement for a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the assembly

listing on page 7.)

—Label Symbols—

All characters other than special symbols may be used for label symbols, but generally alphanumerics
are used. Each label symbol can consist of up to 6 characters; the 7th and following characters, if used, are

ignored by the assembler.

Example: Correct ABC START BUFFER SOSTEP
Incorrect (ABC) HL IY+3 XYZ+3 < Special characters are used.
COMPAREQ :|
f 2 n Il.
COMPAREI The following label are treated as the same label symbol ""COMPAR
Assembler directive EQU defines data (1 byte or 2 bytes) for a label symbol and assigns it to the label.
Example: ABC: EQU 3
CR: EQU ODH

VRAMO: EQU DOOOH
Assembler directive ENT defines a label symbol as a global symbol. A colon (:) placed between a
label symbol and a following instruction defines the label symbol as a relocatable instruction address.

Example: RLDR: ENT
RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), the assembler first searches
the symbol table for the specified label symbol; if it is not found, the assembler treats it as hexadecimal
data. For example, when CALL ABC is encountered, the assembler searches the symbol table for ABC;
if it is not found, the assembler treats it as OABCH and calls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which it is
used, or must be defined as a global symbol in another assembly source program unit. Otherwise, it is
converted into binary and left undefined.

A label symbol which has once been defined cannot be defined again.

ASM-5

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: ~ ABCD: ENT Label symbols ABCD, EFGH and IK are all defined
EFGH: ENT as relocatable addresses of LD A, B. ABCD and EFGH
K LD A.B are also defined as global symbols.
ABCD:
. Same as the above, except that ABCD and EFGH are not
EFGH:
global symbols.
JK: LD A,B

—Constants—

There are two types of constants: decimal and hexadecimal. + and — signs can be attached to these.
A character string which is defined as a label symbol is treated as a label symbol even if it satisfies the
requirements for a constant.

The assembler treats a constant as a decimal constant when it consists of numerics only or it consists

of numerics followed by D.

Example: 23 999 43 —62 16D 0003D
s 3
The assembler treats a constant as a hexadecimal constant when it consists of 0~9, A, B, C, D, E and
/ or F followed by H.
Example: 2AH CDH +01H —BH O0010H OOADH O0OOH

A constant used in the operand of a JP, JR, DJNZ or CALL instruction represents an absolute address
when it has no sign and a location relative to the current address when it has a sign. In other cases, con-
stants without signs and those with a + sign represent numerics, while those with a — sign are converted

into two’s complement.

ASM-6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES

The assembly listing is ouput to the CRT screen or printer when a DOS system command ASM is
executed with SCRT/L or $LPT /L specified as an argument. Examining the assembly listing is one of
the most important procedures in assembly programming since this is when a check is made for errors in
the source program.

The assembler translates the specified source program and outputs the assembly listing, which includes
line numbers, relative addresses, relocatable binary codes, assembler messages and the source program list
(including label symbols, Z80 instruction mnemonic codes and comments). The assembly listing is pages
every 60 lines.

The comment column is displayed when the number of characters per line is set to 80, but is not dis-
played when it is set to 40.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-codes, operands

and comment columns.

Relative Assembler
address message
Line Relocatable
number binary code Label Op-code Operand Comment
[I—L‘ | H_l_’ I || d 3 | T I
>>k Z80 ASSEMBLER SB-7201 <A> PAGE 01 ??/??/?? _| This message is output at the top of each page.
01 0000 S
02 0000 . ; ASSEMBLER LIST SAMPLE
03 0000 :
04 0000 P ; LETNL: EQU 0762H
05 0000 P MSG: EQU 06B3H
06 0000 :
07 0000 START: ENT ; ENTRY FROM UNIT#1
08 0000 MAIN: ENT ; ENTRY FROM UNIT#2
09 0000 310000 LD SP, START ; INITIAL STACK POINTER
10 0003 210000 E LD HL, TEMPO
11 0006 DD210000 E LD IX, TEMP1
12 000A DD360000 EE MAINO: LD (IX+CONSTO0), CONST1
13 000E 00 Q X0A A ; A<-00
47 005A 1A MAIN7: LD A, (DE)
48 005B B7 OR A
49 005C 2000 \' JR NZ, COMP
50 OO5E EB MAINS8: EX DE, HL ; EXCHANGE DE, HL
> Z80 ASSEMBLER SB-7201 <A> PAGE 02 ??/??/?? | A new page is started when the number of lines
on the preceding page reaches 60.

ASM-7

Errors detected during assembly and definition conditions are indicated with assembler messages.

—Definition Condition Messages—

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by the
operand is not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another assembly program unit for
linkage with the current unit by the linker. (See "Assembler Directive ENT" on page 10.)

An undefined byte of data is treated as "00"; 2 undefined bytes of data (or an address) are uncertain.

Example: E LD B, CONSTO
The byte of data'""CONSTO" is not defined in the program unit.
E CALL SORT
Address SORT is not defined in the program unit.
EE BIT TOP, IY+FLAG)

The byte of data"FLAG" is not defined in the program unit.
The byte of data' TOP" is not defined in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value
assigned. A label symbol indicated by this message can be referenced from an external file. In this case,
however, the program unit including the EQU statement must be loaded before the other program units
which are to be linked with it. '

The P message is displayed when a label symbol different from those stored in the symbol table during
PASS 1 is found.

Example: P LETNL: EQU 0762H
P DATA1L: EQU 3
Indicates that LETNL and DATAI1 are defined by EQU.

The P message is displayed in the relocatable binary code column rather than in the assembler
message column.

—Error Messages—

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.
Example: C JP +1000-3

F (Format error)

This message indicates that the instruction format is incorrect.

N (Non label error)

This message indicates that ENT or EQU has no label symbol.
Example: N EQU 0012H
N
No label symbol

ASM-8

L (erroneous Label error)

This message indicates that an illegal label symbol is used.

Example: L JR XYZ

XYZ is not defined in the current source program.
No externally defined global symbol can be used as an operand of the JR or DINZ commands.
The L message is displayed if such a label symbol is specified.

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.

Example: M ABC: LD DE, BUFFER
e
M ABC: ENT
Indicates that ABC is defined more than once.

O (erroneous Operand)

This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)
This message indicates that a mnemonic code is incorrect.
Example: Q CAL XYZ
CALL XYZ is correct.
Q PSHB
PUSH BC is correct.

S (String error)
This message indicates that single quotation mark(s) are omitted from a DEFM statement.
Example: S DEFM GAME OVER
DEFM ’GAME OVER'’ is correct.

V (Value over)

This message indicates that the value of the operand is out of the prescribed range.

Example: V LD A, FF8H
\% SET 8, A
\"% JR —-130

ASM-9

ASSEMBLER DIRECTIVES |

Assembler directives (also sometimes referred to as "pseudo instructions') control assembly, but are
not converted into machine language. However, in the DEFB, DEFW and DEFM directives, their operands

are sometimes converted into machine language.

—ENT (entry)—

This assembler directive defines a label symbol as a global symbol. Label symbols which are referenced
by two or more programs when multiple programs are linked must be defined by the entry directive.
Label symbols defined by the entry directive are included in the relocatable file so that the linker can

identify them The symbolic debugger can performs symbolic addressing using these label symbols.

Label symbols which are not defined by the entry directive contribute only to assembly of the current
source program unit, and are not included in the relocatable file output by the assembler. However, labels
defined by the EQU directive are exceptions since they are defined as global symbols and entry definition
is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN and
GAUSS-SR. The E message in the assembler message column indicates that a label symbol which is not

defined in the current program unit is being referenced externally.

; GAUSS-MAIN
MAINO: ENT < Entry definition of label symbol
5 MAINO
CALL CMPLX
Program unit 1 Address undefined :
" " e)
GAUSS-MAIN™ ESCSii CALL CMPLX+2 < No offset can be added to a label symbol
E message which is defined externally.
END <« END is always required at the end of a
program unit.
; GAUSS-SR
CMPLX: ENT < Entry definition of label symbol
By - : CMPLX
ogram uni
n ”" RET
Gatlss Sk Address undefined .
— 2
C30000 E JP MAINO
E message :
END

ASM-10

