PREFACE

Thank you for buying the Sharp Personal Computer MZ-80 series Floppy DOS.

To make the best use of the Floppy DOS, read the instruction manual thoroughly and perform the

operations described correctly; this will enable you to make most effective use of the system.

— The master disk cannot be replaced after it is purchased; therefore be sure to use the COPY command
to create a submaster disk for normal use.
— It is particularly important to read and understand the explanations of the following commands before

using Floppy DOS.

® FORMAT command (page 41 of the System Command manual)
Before using Floppy DOS with a new disk, it must be formatted and initialized for Floppy DOS.
The file contents of disks initialized for use with other systems (e.q., SB-6510 or SB-6610) will be
destroyed if used with this system. Likewise, disks initialized with Floppy DOS cannot be used with
other systems.

® COPY command (page 35 of the System Command manual)
This command allows creation of submaster disks from the master disk and of backup disks for slave
disks.

— Since the Floppy DOS operating insturctions are divided into several parts, a guide is included to

enable easy reference as needed. Full understanding of Floppy DOS is not a prerequisite to making

active use of it; refer to the guide as needed and your knowledge of the system will grow as you use it.

$-1

PRODUCT GUIDE

The following materials are included in this group of products.

System Command Instruction Manual
Text Editor Instruction Manual
Z-80 Assembler Instruction Manual
Symbolic Debugger Instruction Manual
Linker Instruction Manual
Programming Utility Instruction Manual
PROM FORMATTER
EXAMPLE OF PLOTTER CONTROL APPLICATION
Library/Package Instruction Manual
Appendix
Floppy DOS Master Disk

Also, the following files are included in Floppy DOS Master disk. Refer to the various instruction

manuals for details.

File name Applicable command or manual Function

ASM . SYS ASM Z80 Assembler

EDIT . SYS EDIT Text editing

LINK . SYS LINK Linker

MLINK . SYS MLINK Linker

& DEB & . SYS DEBUG Symbolic debugger

PROM . SYS PROM PROM formatter

BASIC . SYS BASIC BASIC compiler (sold separately)
FORMAT . SYS FORMAT Formatting disks

COPY . SYS COPY Copying disks

HCOPY . SYS HCOPY Copying one frame on CRT
LIMIT . SYS LIMIT Floppy DOS management area declaration
LOAD . SYS LOAD Loading object files

ASSIGN . SYS ASSIGN Device definition

STATUS . SYS STATUS Device status control

CONVERT . SYS CONVERT File mode conversion

PTRP . ASC " Appendix "' Paper tape reader/punch control
PTRP . OBJ "' Appendix"' Paper tape reader/punch control
SIO . ASC " Appendix"' RS 232C control

SIO . OBJ " Appendix " RS 232C control

CMT1 . ASC " Appendix "' MZ-80K cassette tape control
CMT1 . OBJ " Appendix "' MZ-80K cassette tape control
START-UP . ASC "System Command " Key definition

LOADAUX . ASC "System Command" Loading auxiliary device controller
MONEQU . ASC "'Library/Package" Monitor library source file
MONEQU . LIB ""Library/Package"' Library file for the above
DOSEQU . ASC "'Library/Package" Floppy DOS library source file
DOSEQU . LIB ""Library/Package"' Library file for the above
1S10EQU . ASC SB-1510 monitor library source file
1510EQU . LIB Library file for the above
“RELO . LIB "Library/Package" BASIC compiler library file
SB-1511 . RB SB-1511 monitor relocatable file

S-2

—GUIDE TO USE OF THESE PUBLICATIONS—

Want to know the basics of Floppy yes PROGRAM ORGANIZATION" in the
DOS and the system programs? System Command Instruction
Manual.
See the explanations under ""COPY"'
es
e S e 4 and "FORMAT" in the System
e Command Instruction Manual.
Want to run programs generated by yes See the explanations under ""CON-
a cassette tape based system under VERT" in the System Command
Floppy DOS? Instruction Manual.
See the explanations under "' DOS
COMMAND USAGE" in the System
. es Command Instruction Manual
Want to develop programs using only y and the following reference manuals:
standard devices supported by FDOS? Test Editor
Z-80 Assembler
Linker
Symbolic Debugger
yes See the explanations under "User

Want to use user-supplied devices in
addition to standard devices?

o/

C Start

See the explanations under ""'SYSTEM

I/O Routine" in Appendix in
addition to the above manuals.

See the explanations under "LINKING

yes ASSEMBLY PROGRAM WITH Floppy
DOS" in Appendix, and Library/Packag
in addition to the above manuals.

Want to develop programs using
Floppy DOS libraries?

See "CONVERT" in System Command,
yes "EXAMPLE OF PLOTTER CONTROL

APPLICATION" in Programming

Utility and BASIC Compiler, as well

as references indicated in 4 above.

Want to link with programs generated
by the optional BASIC compiler?

yes See the explanations under ""PROM

Want 1 develop abject programsnsing formatter' in Programming Utility

a PROM writer?

yes See "'System Error Messages'' in the

Want to refer to system error
System Command Instruction Manual.

messages?

B,

m
N

End

—OPTIONAL Floppy DOS PROGRAM PRODUCTS—

BASIC Compiler SB-7701 (Previously released)

Requirements:
Major features:

Compilation mode:

Compatibility:

Packaging:

O
o}
o
O
O

O

Floppy DOS and 64K bytes of RAM
Fast execution.

DOS commands can be invoked from BASIC programs.

Can be linked to assembly language programs.

Compiles a source file (source program) and generates a relocatable file (RB
file) which can be linked and loaded with the DOS LINK command.
Programs developed by the SB-5000 and SB-6000 series must be converted to
the Floppy DOS format by the DOS CONVERT command before com-
pilation. Some BASIC commands (file handing commands) may differ in
syntax. Excessively large programs may not be compilable (source programs
are limited to about 10K bytes).

The BASIC compiler is available on cassette tape with a reference manual. The

compiler should be copied onto the submaster disk so that it must be run

under Floppy DOS control.

S-4

Personal Computer

ms-c08

SHARP

E\M’\MK\M\HWM\%\MMLM‘“&M‘MWW‘M’IKO% S S T S S T e 0 Sy 0y B B g By 50 S 0 ey 5 B S

(R

NOTICE
The MZ-80 series of sophisticated personal computers is manufactured by the SHARP
CORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers
of the monitor and the system software (supplied in the form of cassette tape or mini-
floppy disk files).
This manual is for reference only and the SHARP CORPORATION will not be res-
ponsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors of omissions in the descriptions.
This manual is based on the SB-1500 series monitor and the SB-7000 series Floppy
DOS.

ST e e e e e e T e B e e e B B

S S S S S S, T S e

S e S S S o T e e S S ey B S S e 1 e B B o S S S e, 8 e U T e B S

IMPORTANT!

The personal computer MZ-80B contains 32K byte RAM as standard equipment.
When you use system software that requires the disk drive access (DISK BASIC,
FDOS, etc.), it is necessary.to expand the existing RAM area to 64K bytes.

SHARP CORPORATOIN

TCAUZO0012PAZZ(E)
Printed in Japan

Want to know the basic prin-
ciples of the assembler, text
editor, linker and symbolic
debugger?

Want to know the basic
principle and specifications’
of the MZ-80B Floppy DOS?

Want to run the computer
immediately?

Want to develop programs
under Floppy DOS?

Want to link with programs
generated by the optional
BASIC compiler?

Want to add new commands
to a Floppy DOS library?

Want to define user-supplied
1/O devices in Floppy DOS?

Want to refer to the system
error message?

TT TR T T

C

Start)

™ GUIDE TO USE OF THIS MANUAL

See Section 4 (page 41 and 35). Read the explanations

Read Section 4 (pages 18 — 64) throughly, as well as

"EXAMPLE OF PLOTTER CONTROL APPLICATION"

Read Section 4 (pages 18 — 64) throughly, as well as

Read Section 4 (pages 18 — 64) throughly (especially
the explanations about the LIMIT, ASSIGN, LOAD and
STATUS commands). Read "' User I/O Routine" in

See "System Error Messages" in this manual. (page 63)

yes
no See Sections 1 and 2 (pages 1 — 13).
(Readers may skip these sections.)
yes
K
no See Section 3 (pages 14 — 18).
(Readers may skip this section.)
yes
v
no
about the FORMAT and COPY commands.
yes '
_ 9
L Read Section 4 (pages 18 — 64) throughly.
yes
?
no
the following manuals:
BASIC Compiler
Library/Package
in Programming Utility
yes
K
no
Library/Package and "LINKING ASSEMBLY
PROGRAM WITH Floppy DOS" in Appendix.
yes
[
no
Appendix.
yes
?
no
End)
SYS-i

©
=
=
Q
@
£
D
1%
)

——CONTENTS ——

. THE MEANING OF "CLEAN COMPUTER"cvcwin in wawsa s vevin 1
. SYSTEM PROGRAM ORGANIZATION, 3
2.1, Text Editor Punclions' uus: sn snioins o sedeses 0 svims o whesn 4
2:2 Assembly PTOCEUUTES e ive ssmamanin s wawaions i shiahoe e s0asis S
2.3 LINKeT ..ot e e 9
2.4 Symbolic Debugger :.ooies i s paiis i v e 8 EEERE O vl ven 11
2:5 PROM BOTATIET wv: on s o v vmmones 9 sismmamiss i wums s e 13
LFloppy DOS ORGANIZATION . .o o scovamnn i stareis s sisiiaess s 14
3.1 Bool LINKer s oa o awwai i 2k saies o3 udsyed o voaes i wassy 15
B2 TOECS: i i svnims o w5 wnesaimsios w8 Fossiems v 5 wRIa e SERIRRNES e s 15
3.3 Dynamic Segmentation 17
.DOS COMMAND USAGE i 19
4.1 Program Development Under Floppy DOS 19
4.2 FDOS Control Kevs: i ssiuwn i vaiionan o wmaivin i ¥ denas a8 i a%s 20
42.1 Mainkeyboard 20

422 Automaticrepeat function 21

4:0:30 CUISOTCOTITOLKEYE wuv oo voamnmis s wvivines o s ememiens v e 21

4.2.4 Initial settingsttt e e 21

4.2.5 Differences between the SB-1511 and SB-1510 22

4.3 DOS Command CodingRulescoviiunenneneennnnnn 23
4.3.1 Command line format0i....... 23

432 FHilenmameio: o sosnnen v oses sk & nvnhs 73 susenes o v 23

4.3.3: PleHOMES . i wovwnin v maswmsas wewwmey % 5w @i 24

4.3.4 Fileattributes, 24

4:3.5° Ble-tVD68 ws v wvwmn s wawienos o5 saien o Sveeines oy wan 24

4.3.6° 'Wildeard ChBrECEEIS: .« x weweimss s swwns o s &5 25

4.3.7 Drive number and volume number 25

43,8 ‘Basic devicE Mame oy vu va cvvsn s ov vowsn o8 Lebe v o we 25

4,39 Auxiliary devicename, 26
4:3:11) SWILCHES ws 55 50,505,650 o5 43 RSaH o6 Ladali il 16 nasel i e 27

4.3. 11 DEfanlt assUMPionS v ve veasnves o s sn DomEes i s 28
4.3.12 Arguments e e 29

SYS-ii

4.4.1 ASM . e 30
42 ABSIGI i siwimniin 05 555065 555 15 Bniidie srs mbfummsms sim:sme mis 31
G833 BAME . v v o semanEn v VEVEREE Bl SR8 G SETER 31
444 BOOT it e 32
A4 CHATE oo oo cononvn 60 500565 85 SR005.55 58 famm i semmnss 32
A48 CONSOLE .o cuonnis au ssicavssn s s sn Sneses weamie 33
4.47 CONVERT e et e 34
A48 COPY svanin wvsaien 5o divs ds 68059558 3 5o 6 5o tuse 35
49 DRIB . svon nomsvmsas sammmais e s SSEee g SE 36
G410 DEBUG i 56 caivneis e mammman siosmmms s simaass s sn s 37
1] DELETE coan evmamns o5 sopors o oasesn Evauues i v 38
4.4.12 DIR 38
13 EBIL & vowsvisg o5 vapenes S siasess Saaves 1 as e i be 39
4.4.14 EXECttt e e 40
BALS PAEBT 5 55,555,555 55 55 mmmme vim sonponn s semms e s £mamesss 5 41
H A6 BORMAT .o on covisen v comsees 1 vaiik os Sosvaes & 41
4.4.17 FREE ittt ittt i et iieaennnnnnns 42
B8 THCORY 5 cvannin 55 09 05 65 D1 505008 g e s e wm 43
BT REY s v wosnmmmmorn s win sisinss v SRy £ QR 0 WA 43
4.420 KLIST e e e 44
44,21 LIBRARY" 5 iouinin ais 551995 6% tnmmormss nie soammiaiare somse maie 45
X202 BIMIY o cu ssosan i amensenmsin spicemals ©F SPRERGY SPEEGT 45
4.4.23 LINK ... e 46
RS TOREY oo o0 on 59venen 65 SURee o 3o VRTLeR U5 B5ESE b theres 47
A miln AT o050 e amommenemn osomsomimns: K STRREES 8 DATNENISHE HEGE 47
FA26 MON i i 50 05065 65« cmimimas smisimeinie e wmm e sorees 48
BATTD PAGR covvni o swwvwns g5 5o 2o0as 08 SRR 95 0 055605 15 595 49
4428 POKE 49
G229 PROM ; ovosnis o 5o i 5 i mes me sxsmommens a8 susteimise seaie 50
830 RENAME ..ccx o s sn sswnra st s v avers o5 Ve i 4 50
4431 REW ... e 51
SYS-iii
T T T T TR T ITIN

4432 RUN ... i vo ssies o5 vi aesis o8 suEis & ovee@es vs owsasats 51

4833 TBIGHE ; o svsmnen wemmmmma o0 SR KN RSN e 52
438 STATUS . oo vioenis wmsnimos e siw wanias o0 goscsasas sinssls v o 53

4438 TIME . .5 ivasnan i sniies df indemas v woEsm &5 semwems v 53
4,36 TYPE .. cusviciin wn srsmeeainss st pumaaaie 96 swamiss 6 wese o5 54

4437 VERIFY . cv nin vin wimeimoms o simsonaars sonmosass 6 o sa s v 54
4438 RPER : saass o5 o sonensn o 956N 96 SeRswan svamemes v s 55

45 DOS Command SUMMELY . canns on cammm s s wwmiess e s m@ees o 57
4.6 System Error MeSsagescououeiuiurenniennnaanesronsen 63
£ MUTUAL CONVERBION .uovaas au ssvis o s S i Sewaies obes 65

SYS-iv

~ 1. THE MEANING OF "CLEAN COMPUTER"

Three important developments accompanied the shift from the boom in microcomputer kits to the

entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROM devices so that they became readily available,

This development eliminated the need to devote great amounts of time and effort to compressing
system functions to the maximum extent possible to conserve valuable memory for user programs. Now
it is more important that system programs be written and managed in a structured manner and that their
overall usefulness be raised. It is more and more apparent that what the user comes in contact with is not
so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities became available.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner or later
charge coupled devices and magnetic bubble memories will be used in this capacity. This suggests that
there will be increasing stratification of programs culminating in operating systems, and that the efficiency
of systems will also increase. From the user’s point of view, this means that a wide variety of programs will
be readily available for use.

(3) The development of various peripheral circuit LSIs has made possible realization of efficient inter-

faces with high performance terminals.

This means the main concern of the user in the future will be with how many functions are provided
in a system and how useful they are. In terms of the contents of the system, the main concern will be in
developing operating systems capable of organically combining terminals and program processing with
a minimum of effort on the part of the user. It is even possible that real time processing of multiple tasks
and jobs on a level approaching that of minicomputers will become possible with the operating systems

of microcomputers.

As is apparent, it is extremely difficult to predict the extent to which computers will evolve as integ-
rated circuit technology and program language theory become widely dispersed. This tends to undermine
the belief which some people have that rapid changes in hardware result in good computers.

Although the name "clean computer' has been given to the MZ-80 series, computers are basically clean
in principle. As the field of personal computers opens, the concept of embedding a single language,
BASIC, in ROM has become a hindrance to use of full computer capacity. Out of consideration for the
many different types of service which will be required by users as yet-to-be developed technology comes
into use in the future, it will be necessary to preserve the cleanliness of the computer to the maximum
degree possible to minimize constraints placed on its use. The ultimate ends to which computers are
applied will be determined by the junction of technological possibilities and user requirements; the only
other limits imposed are those which are inherent in the fact that the computer is nothing more than a
machine. In order for computers and users to get along well together, it is necessary that computers be
designed with a minimum of constraints so that they can be suited to user requirements, rather than the
other way around. In other words, the usefulness of the computer and the efficiency of the service it pro-

vides depends on how clean it is.

SYs1

The explanations in these publications are intended to show how flexible the MZ-80 series of computers
is in terms of system development. A tape-based program development system is provided to enable inex-
pensive development of small programs; the floppy disk operating system (Floppy DOS) was developed to
assist with the creation of large programs which require large quantities of memory. The functions and
configuration of Floppy DOS are suited to a range of applications approaching those provided by a low
level minicomputer. We think that the software technology and utilization procedures applied in this

system will open a new world of possibilities for personal computers.

SYS-2

~ 2. SYSTEM PROGRAM ORGANIZATION

SHARP MZ-80B system programs include an assembler, a text editor, a linker and a symbolic debugger.

They are organized to execute a sequence of assembly phases.

) - Linker
gext editor e ﬁ:i:gg]ler > Program relocation
ource program editing | y and linkage

Symbolic debugger

Debugging Object program

Fig. 2-1 Assembly phases

Figure 2-1 shows the assembly process, which consists of creating source programs, assembling them,
relocating and linking the assembly output and debugging them.

One cycle of the phases in the left half of the figure makes up a program creation stage. The pro-
grammer prepares a source program with the text editor and creates a source file, then inputs it to the
assembler. The assembler analyzes and interprets the syntax of the source program and assembly language
instructions into relocatable binary code. When the assembler detects errors, it issues error messages. The
programmer then corrects the errors in the source program with the text editor.

After all assembly errors are corrected, the programmer inputs the relocatable object program (the
relocatable binary file), output by the assembler to the symbolic debugger. The symbolic debugger reads
the object program into the link area in an executable form and runs the program. During the debugging
phase, the programmer can set breakpoints in the program to start, interrupt and continue program exe-
cution, and to display and alter register and memory contents for debugging purposes. If program logic
errors and execution inefficiency are detected during the debugging phases, the programmer reedits the
source program using the text editor.

After all bugs are removed from the source program, the programmer loads and links the program
unit(s) in the relocatable file(s) and creates an object program in executable form with the linker.

Each system program always generates an output file for use in other system programs. Figure 4-1
shows the interrelationship of the system programs.

As shown above, the program development phases are executed by four independent system programs.
By assigning the system functions to separate programs, the MZ-80B can accomodate large-scale, serious
application programs, thus enhancing its program development capabilities. "PROM formatter' is pro-
vided which punches object programs into paper tape in several formats for use with various PROM writers
now on the market.

The system program commands are listed in the last part of Appendix.

SYS-3

2.1 Text Editor Functions
The major functions of a text editor are to insert, delete and modify characters, words and/or lines.

If the editor does not allow the programmer to use these functions interactively and easily, he will have to
devote more effort to editing and modifying programs than to executing them. To alleviate this problem,
SHARP uses a command format which is almost perfectly compatible with that of the NOV A minicom-
puter series from the Data General Corp.; this has been refined through the support of many uses.

The most important concern of the programmer in conjunction with the text editor is the concept of
the character pointer (CP) and its usage. During line-base editing, the CP is situated not on a line but
between two consecutive lines, as shown in Figure 2-2. Therefore, the location to/from which a lline is
to be inserted/deleted can uniquely identified. If the CP was located somewhere on a line, two locations
would be possible; that is, before and after the CP. The J and L in CP move commands are representative
commands which use this interline pointer concept.

During character-base editing, the CP is situated not on a character but between two consecutive charac-
ters. This permits close editing. The programmer will become accustomed to the text editor quickly if
he is aware of what commands use the interline CP and what command use the intercharacter CP concept.

During normal editing sessions, several commands are combined to carry out an intended task. Such
commands can be placed on a line separated by separators so that the programmer lists them as they

come into his head.

B 88 5M 88 3J
* CP <— Top of the edit buffer

L b
Two or more commands can be D (beginning of the text)
specified by separating them with 5M [SP]
the separator 58 . A
CP i ¢ Line 1
4
H
2J\C783 [CR] m [CR
L
3J D
SP
c7es [B] ” ;
> Line 2 Edit buffer
—» 7
Search for ADD starting at CP> TR
the beginning of the edit buffer [CP 2 CcP o
L D: -
B SADD SR L % 2T [CR] D
[SP] .
A r Line 3
B
[CR

Fig. 2-2 Character pointer movement

sys4

2.2 Assembly Procedures
As the programmer becomes familiar with the Z-80 instructions, he is able to construct programs more

easily, even though he may feel difficulty in grasping the structure of large programs. At this stage, it is
not hard for the programmer to handle other microprocessors such as the M6800 and the F-8 with the
help of good reference manuals. One of the major reasons for this is the operating principles and architec-
ture of most computers tend to be alike. It is therefore possible to develop a general purpose assembler
for such micro-processors. In this section, the technique employed in the MZ-80 assembler is described.
This will serve as a model for designing general-purpose assemblers.

The basic operation of any assembler is the interpretation of statements. It is therefore important to
establish a proper statement coding format. Figure 2-3 shows an example of a coding format, used in the
MZ-80 assembler, which is familiar to humans and which is easy for the computer to interpret.

Scanning the statements in this format, the assembler:

(1) Recognizes labels and stores them into the label table,

(2) Recognizes fields and assembles object codes,

(3) Generates an assembly listing, and

(4) Generates relocatable binary code.

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assembler if
it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (Figure 2.4)

and a 2-dimensional operation table (Table 1) are introduced.

Label | :| Mnemonic [—] Operand 1 [,] Operand 2 [;] Comment [./

] 1

A

Field 1 Field 2 Field 3 Field 4 Field 5

Fig. 2-3 Assembler coding format

SYS-5

The symbol # in the instruction list represents a register and the symbol § represents a label or numeric
value. The assembler identifies each instruction by matching the read assembly statement with this listing.
As a result of this match, the assembler produces the major portion of the op-code, the byte length of the
instruction and its atom type. An atom type is one of the numbers identifying the instruction groups of
the Z-80 instruction set. As is seen from Table 1, there are 48 atom types; these are sufficient for newly
defined instructions.

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom type
01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits are to
be performed in that order. The control words identified by the set flag bits specify the actual operations
to be performed. Flag 3 indicates that this instruction must be a 1-byte instruction, that it must shift the
data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4 indicates that
this atom type represents the LD r,r’” operation.

Let us examine atom type 18. The set flag bits are O, 1 and A. The control word for flag 1 is all zeros,
which means no operation. Flag A indicates that the instruction requires address modification (address
procedure) and that the address field must be not longer than 16 bits (size of the field). Thus, atom type
18 represents instructions such as JP nn’ and JP NZ, nn’.

The above assembler operating procedure is summarized in Figure 2-5. Most of the assembly operations
involve table references. In fact, the assembler uses a register table, a separator table and a label table
during the assembly process, in addition to the instruction list and the 2-dimensional operation table. If
these tables are redefined to conform to a new instruction set the assembler may also be used as a cross

assembler.

01 0000 :

02 0000 : INSTRUCTION LIST

03 0000 :

04 0000 SYMP : ENT

05 0000 4C442023 DFFM 'LD # #’ ;LIKELD B, C

06 0004 2C23

07 0006 F1 DFFB FlH F delimits the instruction pattern. 1 indicates the length of
the instruction in bytes.

08 0007 40 DFFB 40H Main portion of the mnemonic code

09 0008 Ol DFFB 01H Atom type

10 0009 4C442023 DFFM 'LD #, (IX$)' ; LIKE LD A, (IX+15)

11 000D 2C284958

12 0011 2429

13 0013 F3 DFFB F3H 3 indicates the length of the instruction in bytes.

ig ggig gg% gg?g gggDH DD4600 is the main portion of the mnemonic code.

16 0017 03 DFFB 03H Atom type

17 0018 4C442023 DFFM 'LD #, (IY$)'’ ; LIKE LD B, (IY+AFC)

18 001C 2C284959
19 0020 2429

20 0022 F3 DFFB F3H

21 0023 FD46 DFFW 46FDH

22 0025 00 DFFB O00H

23 0026 03 DFFB 03H

24 0027 4C442028 DFFM 'LD (IX$), #’ ; LIKE LD (IX+23), A

25 002B 49582429
26 002F 2C23

27 0031 F3 DFFB F3H
28 0032 DD70 DFFW 70DDH
29 0034 00 DFFB 00H
30 0035 04 DFFB 04H

Fig. 2.4 Instruction list (part)

SYS-6

Table 1 Two-dimensional operation table

Flags (analyzed and processed in ascending flag bit number order)

Atom Bescription O 1 2 3 4 5 6 78 9 ABCDEF
00 Reserved
01 | LD # # 1 | a2
02 LD #§ i3 1 1
03 | LD # (IX+$) LD #, (1Y+3) 1 11 1
04 | LD (IX+3), # LD (IY+3), # 1)1 1] 1
05 LD (IX+$),$ LD (IY+$), $ 1[1 1]1
06 | LD A, (3) 11 1
07 | LD (3), A 1 1
08 LD BC, § etc. 11 1
09 | LD IX,$ LDIY,$ 1|1 1
0A | LD HL, ($) 111 1
0B | LD BC, ($) etc. 11 1
0C | LD (%), HL 1 1
0D | LD ($), BC etc. 1 1
OE | ADD A, #etc. 11 1
OF | ADD A, § etc. 11 1
10 | ADD A, (IX+3) etc. 11 1 1
11| INC Zetc. 1 1
12| INC (IX+$) etc. 11 1
13 RLC #etc. 1 1
14 | RLC (IX+$)etc. 11 1
15 | BIT §, #etc. 1 1 1
16 | BIT $, (HL) etc. 1 1
17 | BIT §$, (IX+3) etc. 1 1 11
18 | JP NZ, § etc. 1|1 1
19 JR C, § etc. 11 1 |
1A | JR $ DINZ § 1 1
1B | SUB #etc. i 1
1C__ SUB § etc. 1 1
ID | SUB (IX+$) etc. 1 1 1
1E | RST § 1 1
1IF | IN A, ($) 11 1
20 | IN % (C) 1 1
21| OUT ($),A 1 1
22 | OUT (C), # 11 1
23
24
/A
L ;i
2E === ERsEm—c
2F
ADDRESS PROCEDURE 1 1] 1 1
MUST BE SINGLE T B3]} 111 1
MUST BE ADR-2 1
A 1
9 11 1
& LEFT SHIFT POSITION
= 1 1 1
-
)
= DON'T CARE
& EQUATION PROCEDURE 1 111
= 11]1]1 1
) 1
SIZE OF FIELD
11 1
1

SYS-7

((START)

l LOC<0 | LOC (location counter)

rRead statement |

END state- 1O

ment ?
no
yes Pass 17
Wait next pass
yes ” Rc{_ﬁfréce instruc- ”
no
Label?
Extract flags
yes
Store label into
label table
no
Reference instruc- " {
tion list
Perform register/table reference,
pattern conversion, shift and
other operations as specified
ILOC‘—LOC+IHSUIICIIOH| Label no by the control words
ength reference?
Address modification
(decimal-to-binary
on) :
” Reference label table " (hexadecimal-to-binary
conversion)

[
LAssemble object code '

[TOC~LOC+nstruction
length

Pass 27

- - Convert object cod
ﬂ Construct CRT unmg]] Construct printer g v
Iisti.ng format

l

O

Fig. 2-5 General assembly flow (excluding assembler directive processing)

SYS-8

2.3 Linker

The linker loads and links two or more program units using external symbol referencing instruction
from relocatable files and generates absolute binary code in the link area and saves it into an object file.
The relocatable files contain control frames and external symbol information. The linker resolves external

symbol references and relocates the program units as described below.

(1) External symbol reference resolution

The linker refers to the symbol table when resolving external symbol references (see Figure 2-6). The
symbol table contains a 9-byte symbol table entry for each external symbol. A symbol table entry consists
of a 6-byte field containing the symbol name, a 1-byte field containing the definition status, and a 2-byte
field containing an absolute address with which the symbol is defined or a relocation address.

When the linker encounters an external symbol reference while loading the program unit from a reloca-
table file, it checks to determine whether the symbol has been cataloged in the symbol table.

(1) If it has not been cataloged, the linker enters it into the symbol table as a new undefined symbol,
loads the relocation address into the symbol table entry and loads code FFFFH into the operand
address of the instruction in memory.

(2) If it has been cataloged and defined, the linker loads the defined absolute address into the operand
address in memory.

(3) If it has been cataloged but not defined, the linker moves the old relocation address in the symbol
table entry to the operand address in memory and loads the new relocation address into the symbol
table entry.

Thus, the linker chains undefined references to each symbol and, when the symbol is defined, replaces
all reference addresses with the defined absolute address. In other words, when an external symbol defined
by the ENT assembler directive appears in the control frame, the linker enters the symbol into the symbol
table as a defined symbol and replaces all preceding operand addresses chained in memory (terminated by
FFFFH) with the absolute address defined. The programmer can examine the definition status of the
symbols using the table dump command.

An example of external symbol reference resolution follows. Assume that three program units are to be
linked and that each unit references subroutine SUB1 in the third program unit (see Figure 2-8).

When the first CALL SUBI instruction is encountered in program unit 1, the linker enters SUB1 into
the symbol table as an undefined symbol, loads the operand address (relocation address SOO1H in this
case) into which the value of the symbol is to be loaded into the 2-byte value field of the symbol table
entry and loads the code FFFFH into the operand address in memory (see Figure 2-8(a)).

When the CALL SUBI instruction is encountered twice in program unit 2, the linker chains together
their operand addresses which reference SUB1 (see Figure 2-8(b)). When SUBI is defiend in program unit
3, the linker designates SUB1 as a defined symbol and loads all operand addresses referencing SUB1 with
the defining absolute address. The end of the operand address chain is identified by the code FFFFH.
Figure 2-8(c) shows that SUB1 is defined by absolute address 5544H. When the linker subsequently en-
counters a CALL SUBI instruction, it immediately loads 5544H into the operand address of the instruc-
tion since symbol SUB1 has been defined.

SYS-9

0000 Monitor

12A0(Floppy DOS
Linker
Stack area

FE0O Reserved

Loading area

Link area

}Symbol table area

Fig. 2-6 Memory map for the linker

2 (31456

70189

Symbo'l name

N A
Definition Address
status

(value)

Fig. 2-7 Symbol table entry format

Program unit 1

¢

END

CALL SUB1 |—

5000

cD | FF | FF

l«—[dentifies the

location referenc-
ing an undefined

symbol for the
first time (serving
as an end mark).

—{ sust [ozfoi[so] 5P fable
This code indicates that A
the symbol is undefined.
(a)
Program unit 2 l
2 5000[cD | FE | FF |\
CALL SUB1 l
: —1-5110 CD |_.01._-_|.._50. X
¢ Operand
CALL SUB1 |—»5310] CD | 11 | 51 || addresses
2 2 referencing
the symbol
END are chained
together.
| suB1 [o2[11]53}
()
Program unit 3
; 5000{ cD | 44 | 55
|
SUBL : ENT | s110[cD [44 | 55
XOR A |)
5310{ CD | 44 | 55
l
END L»5544 AF
L sUBI |00[44|55

This code indicates that
the symbol is defined.

(©)

Fig. 2-8 Example of external symbol reference chaining

SYS-10

(2) Program relocation

The linker relocates instructions referencing external symbols while linking the programs. For instruc-
tions which reference internal symbols and for which relocation addresses are generated by the assembler,
however, the linker produces absolute addresses for the symbols by adding bias to the relocation
addresses.

Thus, the linker generates absolute binary code in the link area in an executable format which is de-
pendent on the bias specified by the programmer when the program unit is loaded. When creating an
object file, the linker saves the absolute binary code from the link area in the file together with its loading

address and execution address.

2.4 Symbolic Debugger

The symbolic debugger inputs relocatable files under the same input conditions as the linker except
that it presumes that absolutable binary code is loaded into the link area in an immediately executable
form. The symbolic debugger permits the programmer to debug his program while running it.

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified
locations and check the system status at these points. The programmer specifies the breakpoints at which
program execution is interrupted. When a breakpoint is encountered, the symbolic debugger saves the
operation code at the address set as the breakpoint in the break table and replaces it with an RST 6
instruction (F7H) (see Figure 2-9).

The RST 6 instruction is a 1-byte call instruction to address 30 in hexadecimal. Its operation is as

follows:
(SP— 1)« PCu, (SP — 2) < PCL
PC < 0030H

Hexadecimal address 30H contains a jump instruction which transfers control to the breakpoint control
routine in the debugger.

Each breakpoint is associated with a break counter. A break is actually taken when the breakpoint is
reached the number of times specified by the break counter. Before the break count is reached, execution
is continued with the original operation code saved.

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and
displays them in the screen. When the program is restarted, the debugger restores the contents of the
register buffer to the CPU registers and pops the break address.

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in

decimal.

Saved OP code Replace ¢
Breakpoint address . kvioiris
(label symbol) F7 iBsr::t P
Break count Variable count ¢

Break table entry

. Object program
Fig. 2-9 Breakpoint setting and breakpoint table format

SYs-11

The symbolic debugger has indicative start and
memory list dump commands in addition to the
breakpoint setting command, execution command,
memory dump command and register command.
The indicative start (I) command displays contents
of the CPU registers with which the program is to
be

transferring control to the address designated by

executed for confirmation before actually

the program counter (PC) displayed. For example,
when an I command is enterd, the display shown in
Figure 2-10 appears on the screen. When the pro-

grammer pressed |CR| after confirming the CPU

D
A
=]
A
=]
P
i
St

The above display shows that the program is to be started

at address 7500 (hex) with the CPU register values shown.

Fig. 210 I command example

register contents, the debugger initiates an indicative start as shown in Figure 2-11,

Z-80 CPU

Register buffer
General-purpose AF BC DE HL
registers AF" BC' DE’ HL'
Special-purpose SPIX IY 1 /
registers PC

Fig. 2-11 I command operation

The debugger restores the contents of
the general-purpose registers and special-
purpose registers SP, IX, I'Y and I, then
the value of the PC and initiates pro-
gram execution.

The memory list dump (D) command displays the machine code in the specified memory block with

one instruction on each line.

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure

2-12. With symbolic addresses, the programmer can specify any addresses in the program wherever the

program is located in memory.

The programmer can specify the following types of addresses symbolically:

(1) Addresses represented by a symbol

(2) The address of an instruction 1 to 65535, lines away from the address represented by the symbol

(3) An address =1 to 65535, bytes away from the address represented by the symbol

Of course, the programmer can also specify memory locations with absolute addresses.

For example, the program unit whose source program is shown at the left of Figure 2-12 is loaded into

memory by the debugger starting at hexadecimal address 7500, execution of a D command will display

a dump of the memory block as shown at the right

in Figure 2-12.

START : ENT
LD SP, START
CALL MSTP
XOR A
LD (? TABP), A
LD B, A
MAINO : ENT
LD A, OFH

Fig. 2-12 D Command

SYS-12

]

?
7
£
7
7
5

NS

-
b=
F)

0
~NOX
QD
DN
Z
1]

WHWIOWAD
o2}
m
~J
L]

M~IR TS =~

@
b

2.5 PROM Formatter

The PROM formatter generates formatted absolute binary code and stores it into paper tape under the
PTP control. It is the system backup software used to transfer object programs to the PROM writer.
Currently, the following paper tape output formats are supported (see Figure 2-13):

(1) BNPF format: Britronics, Intel and Takeda

(2) B10F format: Takeda
(3) Hexadecimal format: Britronics, Takeda, Minato Electronics

(4) Binary format: Britronics
The variety of tape formats supported by the SHARP PROM formatter extends the application range

of programmable ROMs,

format 2 T

—
-
-+

(Br i?htr*'on ics RPG-8764)
ma

tel HPRSR9)as Fig. 2-13 Paper tape output formats

a
B
D
=
F
G
H

++

The PROM formatter is made up of format, the PTP and the PRT.controls (See Figure 2-14), These
enable the programmer to perform foramt conversion.

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when reading
paper tape. In the formats using ASCII code (BNPF, B10OF and hexadecimal), the most significant bit is
assigned even or odd parity. When even parity is used, for example, ASCII code "A'" (41 hexadecimal)
is punched as is, whereas "C" (43 hexadecimal) is converted to C3 in hexadecimal before being punched
by setting its MSB. The parity mode can be set using the P command with the desired switch assigned,
e.g. XP$PTP/PE /LF.

This PROM formatter assumes that the PTP/PTR interface is compatible with the RP-600 puncher/
reader from the Nada Electronics Laboratory. It can control RP-600 directly using the general-purpose I/O
card (MZ-801/O-2). It can also control other models, such as the DPT26A paper tape punch from Anritsu,

if I/O conforming to the punch specifications can be implemented on the general-purpose I/O card.

All Floppy DOS
FROM Nomatter P »| devices other
i than the SCMT
Absolute binary Roatter section oyt
program unit -
Format control /—_/
: (Format conversion, o
: output to punch, Paper tape punch
input from reader) /\/

/—\/

Paper tape reader

Fig. 2-14 PROM formatter configuration

SYS-13

3. Floppy DOS ORGANIZATION ~

Figure 3-1 shows the files which are run under control of the SHARP MZ-80B Floppy DOS. The

Floppy DOS has the following features:

(1) Multistatement processing.

(2) Default argument processing.

(3) Allows wildcard characters in file references.

(4) File-oriented processing extended to I/O devices.

Boot/linker

[1]

Text editor
Z-80 assembler
Linker

Floppy !
DOS

PROM formatter

BASIC compiler

|
|
Symbolic debugger |
|
|
|

INNNAN

Built-in commands

|

User programs

Fig. 3-1 FDOS file organization

Figure 3-2 shows the memory map for the above
system resources. Floppy DOS is made up of a re-
sident section and an overlay section. Their resident
section includes:

(1) A command line interpreter which interpretes
and executes system commands.

(2) A boot linker which reads and links command
files from the Floppy DOS disk.

(3) A supervisor call procedure which manages
system resources, including files.

(4) An I/O control system (IOCS)

(5) A file management program which managés the
disk allocation map, file table and other infor-
mation.

SYs-14

0000

12A0

TPA

FEOO

Fig. 3-2 Floppy DOS memory map

| Reads and links system commands.

10CS | The standard devices include disk, tape unit, keyboard,
display unit, line printer, paper tape punch and paper tape reader.

Include DIR, XFER, etc. (See Table 4-1)
— Other transient commands | Include LIBRARY, VERIFY, etc. (See Table 4-2)

Monitor

Floppy DOS main section
Command interpreter,
boot linker, supervisor
call procedure, work
utilities

10CS main section
IOCS table, file
management

Command unit

Tables
Allocation map,
device table

Work segments
segment variables
ZWORK0—-ZWORK19

Stack area

Reserved area

| Source files, relocatable files and object files created with this system

» Resident area

Overlay area

(transient area)

3.1 Boot Linker

The DOS transient commands (whose file mode is .SYS) are not resident in memory, but are stored
in relocatable files on the system disk. These programs exist not in absolute form but in relocatable
form. When they are invoked, boot linker relocates them and specifies their loading addresses (see Figure
3-3).

These relocatable system files differ from relocatable files generated by the assembler in the way in
which they are loaded into memory. The external symbol references of the system files have been re-
solved; these are just relocated by the boot linker. Accordingly, the control frame associated with each
statement of the system programs contains only a field identifying the statement as having a relative
address or absolute data and containing the byte count of the statement. When a relative address is indi-

cated in the control frame, the system adds loading bias to the relative address to form an absolute

address.
Monitor
] Floppy DOS
=' 13
[l
Y »{ Absolute binary code
Floppy DOS ¢ Transient area
transient (DOS commands
commands may be loaded in
arbitrary locations
Relocatable files ’ within this area)
(identified by the .SYS file mode)
Fig. 3-3 Loading Floppy DOS transient command with the Floppy DOS boot linker
3.2 10CS

IOCS in Floppy DOS provides control over the display unit, cassette unit, floppy disk unit and printer.

The programmer can define other I/O devices using the ASSIGN command.

Control programs for such user I/O devices can be stored in external files and their names can be cata-
loged in the IOCS table. They are invoked and executed by IOCS as required.

The actual file management programs form a hierarchical structure as shown in Figure 3-4. In the MZ-
80B system, routines from the macro command programs to the device control programs are collectively
called the input/output control system (IOCS). Being of modular construction, these programs are as
independent of each other as possible. By hiding controls unique to I/O devices, such as device address
management and buffering, IOCS permits the programmer to handle these programs as logical files and to
control the I/O devices as general files.

The alternate start/stop feature is enabled during IOCS operations, The system temporarily suspends
the read operation when an alternate stop is effected during a data read. At this point, the programmer
can switch to the DOS command mode or continue the suspended IOCS operation by effecting an alter-

nate start.

§YS-15

1un Aejdsip

pieogAay

Jun ade)
WA waisig gound adey sadeg lapea adey tadeg saupd aury 21105580 WalsAS 1nun ysip Addogq
M o e o e N
20142p 135 /1 [Fusg nv saataq
' ?) /l\ﬂ) /IA\" i
y L
Jajjouoa IA[[oNuoD I2[[ONU0d Iafenued 1a[0n U0 pund J2[jON}UOD IapRa 18[j011H0D I3[oIu0d safjonuog | sweidord
201489p Ta3(] 0/l [eusg jun Aepdsig preoqiay adey 1adeg ade) 1adeq 1oud aury ade) aqyasse) jsip Addogy _Mm_:uan“m
1A
‘l['lr,.",,[.‘hll.'l.
e
wesdoxd
011U [AULEY) 5201
» = sweadoad
S — ... Mm@.—u... PUBLLILIOD OIIBRY

swreidoad

1uawadeuriu apg

SPUBLUIWOD JUMNSURI]

1zpdwod)1V

13euuo) Wodd

1288nqap anoquifg

1071p3 IXaL

13]qQUISSSE ()g-F

werdord
wayssg

suresdosd Jurwaleuew 3[1] Jo AMONAS [ENYIEIAY £ "I

5YS5-16

3.3 Dynamic Segmentation

Memory segmentation and relocation can be accomplished easily if a hardware relocation register is

used. However, no presently available 8-bit microprocessor has such a register. Consequently, methods of

simulating this function are commonly used. The boot linker previously mentioned can be thought of as a

variation of such simulations. Here, a method of memory segmentation and assignment which leaves the

memory image unchanged is described.

Two subroutines are used for memory segmentation as shown in Figure 3-5 and 3-6. These two subrou-

tines and segment variables are maintained in fixed locations in the Floppy DOS main program area. They

are accessible to all programs. The 20 segment variables are initialized during preprocessing for each

command and assigned values so that no memory segment exists. They are redefined as required during

processing of each command, thus creating memory segments.

Fig. 3-5 Extending a specified segment

| TR e e o e Y TTHE i BT R T e e R g |
I Ae2 ; Segment No. (0-19) }
: BC «<—500 ; 500 bytes I
I CALL DOPEN ; DYNAMIC OPEN Jl
B e e e e e e e e e e e e e it i e
Segment No. Segment variables Results
0 ZWORK 0 : 5000 ZWORK 0: 5000
1 ZWORK 1 : 5500 ZWORK 1: 5500
2 ZWORK 2 : 6000+(500) ZWORK 2 : 6500
3 ZWORK 3: 6500+(500) ZWORK 3: 7000
4 ZWORK 4 : 7000+(500) ZWORK 4: 7500
5 ZWORK 5 : 7500+(500) ZWORK 5: 8000
6 ZWORK 6 : 8000+(500) ZWORK 6: 8500
7 ZWORK 7 : 8500+(500) ZWORK 7: 9000
18 ZWORK18 :29000+(500) ZWORKI18 : 29500
19 ZWORKI19 :29500+(500) ZWORKI19 : 30000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2) *
— —— (ZWORK 2)
(ZWORK18) [-
f-"'_""h-...__-_,..-‘
(ZWORKI19) - (ZWORK18) r_\/
(ZWORK19) -

SYS-17

Fig. 3-6 Deleting a specified segment

| B b e i e o A D .~ s it et e R ek e S R D -i
I
I A2 ; Segment No.(0-19) E
| BC+«—500 : 500 bytes |
L CALL DDELET ; DYNAMIC DELETE Jl
Segment No. Segment variables Results
0 ZWORK 0 : 5000 ZWORK 0: 5000
1 ZWORK 1 : 5500 ZWORK 1: 5500
2 ZWORK 2 : 6000—(500) ZWORK 2: 5500
3 ZWORK 3: 6500—(500) ZWORK 3: 6000
4 ZWORK 4 : 7000—(500) ZWORK 4: 6500
5 ZWORK 5 : 7500—(500) ZWORK 5: 7000
6 ZWORK 6: 8000—(500) ZWORK 6: 7500
7 ZWORK 7 : 8500—(500) ZWORK 7 : 8000
18 ZWORKI18 :29000—(500) ZWORK18 : 28500
19 ZWORK19 :29500—(500) ZWORKI19 : 29000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2)
(ZWORK 2) ﬁ (ZWORK 3)
r—_/ ——
(ZWORKI18) - (ZWORKI19) [
(zwoaxw)l. -

1831 NN (X3

pasnup

sjuRuBas
20y wado u

padjuy pue
PAjQRUISSE UANR] SEY
s Juawdas 102lqQ

T 405 "LSIL ANIT (%3

Aq el joqurky

e ———————
eaue Junjury
([A0° 1S3 L)
ES ALY (RO
(84 1805)
payul] 3q 01 T 1uaWE
(891531
puI] 3 o0 | 182wdag
(1aqurg)
Juawdas puEIwe))
Soq Addojg

TILATS "3/14D8 "LSTL WSV (%3

Qe joquiAg

(g4 153.L)
wawiEas 2y gy

(J5% L53L)
Judiudss apy 20unog

(I3|qLuasse O Z)
JUWEAS PURLIWO)

Liad (x3

pantasay

Bare Yorlg — |

Tagng el

ozl |
PaAIasaL SB I09IP3 |

Juawdas Ny AL

%31 2 Ut papnppy |

Juawidas afy) a2N0S

(Ioipa 1xa)
uawdas pUEWILIO))

S0q Addojg

PO

$0q £ddorg Sunsty Ajquuassy s0q Addop
JoNuoRy h Ioluopy I0)IuORy
UONNAINT D HMWW x 1y v D \ TapquEassy D
[+ [+] [+]
uoHmaaxy 4471531 / ayqur] gy Is3L / 12mdwos JISVE 25¥'1S3L
Aqe [oquuisg
pasnun e - ———— pasnup]
eare Juryury
stuawdas 2y wado o ~
(0 1530 @4 1520
Juawias afL gy
Fas F
Juzwdss Juing (28¥°1S3L)

wawdas feary

(ra0Q°Ls3l)

payul] pue

pardwod uaq sey
Y2y Tuww3as 122090

s0q Addopg

LTI T T

1830 NMY (XT

(=2urT)
ygaurdas puTwoD)

SO Addorg

Jojnuop

80T 0T34 "LSAL WNIT(x3

WS a [EO
(21T 0TId)
payul 2q 01 7 uwIag
[CERTETR
paNUT] 2q o1 [juswdag

Juzwdas any auneg

15 uonendwo)

(sapdwoo HSvd)
WSS PURLILIOTY

S0q Addofg

FLNTT

ISEL OISV (3

soa Addojy £q syuamSag yo UONBAIDY L-€ “B1f

10UIPa 1AL

i

SYs-18

4. DOS COMMAND USAGE

4.1 Program Development Under Floppy DOS

Source file Text editor
Source file :
C)_O . XFER g O EDIT .| Source creation
(o} and editing
$§ CMT KEER U

Source file % ED =g FDe
Mg Y ASM BASIC
_/—\ Assembler BASIC compiler

$PTR, SPTP, etc. Assembly

listing

Compilation
listing

Assembly Compilation

$CRT, $LPT, etc. $CRT, $LPT, etc.

Library file

Q LIBRARY J O

Relocatable files

0 0
LINK DEBUG
System file Linker Symbolic debugger
o - Linking Debugging
O
d \
LE Link
Execution information
Object file
Object file BNPF, HEXADECIMAL, BINARY formats
XFER
QO O | wow
(o
$CMT
RUN $PTR, $PTP, etc.

Y
(Execution)

=5 Fig. 4-1

SYS-19

4.2 Floppy DOS Control Keys

4.2.1 Main keyboard
Except for the following, the control keys on the main keyboard are used in the same manner as under
the SB-1510.

SHIFT The scrolling speed of the display data is maintained at the preset speed while this key is
held down. When this key is released, the scrolling speed returns to the maximum speed.
The scrolling speed is set with

POKE $000F nn
nn =01 ~FF The speed slows down as the value of nn is increased.

nn =40 Normal speed
+ @ Deletes the portion of the line from the cursor position to the end of the line.
[SHIFT| +[1] Sets a tab at the cursor position.
SHIFT' + Resets the tab at the cursor position.
[SHIFT] + Resets all tabs sét by the above procedure.
'SHIFT| + [4] Sets the number of characters per line to 40,

The screen is cleared and the cursor is returned to the home position.

SHIFT| + Reverses the shift mode of the alphabetic keys.
Making these entries again resets the reversed shift mode.

SHIFT| +[8] Sets the number of characters per line to 80. The screen is cleared and the cursor is re-
turned to the home position.,

SHIFT| + [INST Enables insertion of an arbitrary number of characters at the cursor position. Pressing
the key terminates insertion.

BREAK Terminates the program currently being executed, displays the message ''Break'" and
awaits entry of a new DOS command. Executing ON BREAK GOTO under the BASIC
compiler causes a jump when the [BREAK | key is pressed.

SPACE Holding down the space key for a certain period of time suspends current program execu-
tion. The time differs according to the operation currently being executed. For example,
when the printer is operating, the space key must be held down until a carriage return is
performed. After program execution has been suspended, one of the following operations
is possible.

® Pressing the [BREAK | key : See the explanation above.

® Pressing the |SPACE| key : Resumes program execution.

The [0] through [8] keys are on the numeric pad.

It is convenient to affix seals on which the following functions are printed to the front of the numeric
keys to identify the functions of | SHIFT |+ 0 ~[5],[8].

DELETE|, [SETTAB|, CLRTAB], [CLR , [CHR40], [CHANGE]|, [CHRS80
TO EOL | LALLTAB 0], |

SYS-20

4.2.2 Automatic repeat function
All keys other than the cassette tape control keys are provided with the automatic repeat function:
when a key is held down for more than a preset period of time, the key entry is automatically repeated
at a preset speed. The period and speed are stored in memory location 000D and can be set with the
following BASIC statement.
POKE $000D sstt
ss=01 ~FF : The repetition speed is reduced as the value of ss increases.
tt=01 ~FF: The period described above is determined by (ss) > (tt), so it becomes greater as

the value of tt is increased.

Example:
POKE $000D 2010

4.2.3 Cursor control keys

Key entry Picture character Code Function

+ 4] 4 O1H Moves the cursor down 1 line.
+ 1] 02H Moves the cursor up 1 line.
+ 2] 03H Moves the cursor to the right by 1 space.
+ 3 04H Moves the cursor to the left by 1 space.

GRPH | + H 05H Moves the cursor to the home position.
+ 06H Clears the screen and moves the cursor to the home position.
B B 1FH Delimiter

4.2.4 Initial settings
Various initial values are set when Floppy DOS is activated by MZ-80B system IPL. These values are the
initial default values, and they can be updated by the programmer.

e Definable function keys

RUN Fil] a8 F D15
XFER._ [FI12] L $ FD2;
DELETE [FI3] $ KB
RENAME [F14] .8 CRT
DI R FIS] S LPT/L
EDE T s [F16] .S CMT;
ASM AS C o,
LI NK RB

DEBUG F19 L1 Bwo
FIO] BASIC F20 OBIJ ..

For - , press — |F10] and [SHIFT | simultaneously.

sYs-21

Scrolling speed: nn=80

Automatic repeat speed and preset period:

(ss) >k (tt) =40 % 0OC

Tab spacing: 5 characters

4.2.5 Differences between the SB-1511 and SB-1510

Small letter input mode: Shift position in the normal mode or | SHIFT [+[5|
Other initial values are the same as those set by BASIC SB-5510.

Item

SB-1510

~ SB-1511 (monitor)

Automatic repeat function

® Cursor control keys only

® Key entry is repeated only when a
cursor control key and the SHIFT
key are pressed simultaneously.

® All keys other than the cassette tape
control keys

® The repetition speed and the time re-
quired for starting repetition are
variable. See page 22.

Definable function keys

e Up to 10 functions can be assigned.

F1| ~ [F10]

® Up to 20 functions can be assigned.
[F1] ~ [F10] and
SHIFT] + [F1. ~ [F10

When interruptions are disabled upon
entry to a subroutine, they are enabled

When interruptions are disabled upon
entry to a subroutine, they are enabled

Interrupt before the RET instruction is executed. or kept disabled according to the condi-
tion set just before control was trans-
ferred to the subroutine.

RST7 (PANIC) displays the contents of e RST7 (PANIC) displays the contents
registers AF, BC, DE, HL. and PC and of registers AF, BC, DE, HL, PC and

RST awaits entry of a new monitor command. SP and awaits entry of a new monitor

command.
o RST6 is reserved for use by the
debugger.

SYs-22

4.3 DOS Command Coding Rules

This section describes the coding rules for DOS commands.

4.3.1 Command line format

In the command mode, Floppy DOS prompts for command entry with a number and the symbol " >".
Enter a command followed by arguments (described later), if necessary, press key and the Floppy
DOS will execute the command.

Example 1: %>EQEI=—‘I,E\:‘§L@ Argument s denotes a space.
\f —— Command
b— Prompt

Default drive number (described later)

The first number (1 ~ 4) indicates the default drive, namely, the currently logged-on disk drive.

Some commands may require two or more arguments.

Example 2: 2> XFER . TEST, § CMT |CR
i Yt R el Argument 2
————— Argument 1
Command

The command and arguments must be separated by a comma and/or spaces.

(Legal) 2> XFER.__TEST..$ CMT[CR]

(Legal) 2 > XFER , TEST, $ CMT

(Illegal) 2> XF ER TEST, ,$ CMT
\/\/‘"V‘\/‘\ o VE t

Only one comma is allowed.
L No space is allowed.

Two or more commands may be specified on one logical line by separating them with colons (" : ").
A line containing two or more commands is called a multistatement line. A logical line may contain any

number of commands but it must not exceed 159 characters in length.

Example 3: 2> DELETE TEST : RENAME AAA, TEST : ASM TEST
Example 4: 2> Xfer $ kb, aBc

Either upper or lower case letters may be used for commands and arguments. The Floppy DOS
does not distinguish between upper and lower case letters.

4.3.2 File name
All program and data files on a disk are given file names. The programmer must specify a file name
when storing a program or data file on a disk and when reading it. A file name must be from 1 to 16

alphanumeric characters (including lower case letters) and/or special characters !, #, %, &, ", (,), +, —, <,
= > @, [,\ and].

No two files on a disk can have the same file name and file mode (described later). Files with the same
file name may exist on a disk if their file modes are different from one another.

(Files with the same file name and mode may exist on different disks).

SYS-23

4.3.3 File modes
The file mode identifies the kind of the file. It is usually used with a file name. The MZ-80B file modes

are listed below.

File mode
File mode Meaning
.0BJ Identifies an object file which contains Z80 machine code.
_ASC Identifies a source file, such as one created by the text editor, which contains a stream of
ASCII characters.
RB Identifies a relocatable file which contajnslpseudo-machjne language code (relocatable binary
code) generated by the assembler or compiler.
.LIB Identifies a library file consisting of two or more relocatable files.
SYS Identifies a file containing a system program which runs under Floppy DOS, such as the text

editor and assembler.

4.3.4 File attributes

File attributes are information pertaining to file protection. There are four file attributes: 0, R, W and
P. File attribute O indicates that a file is not protected. The other file attributes inhibit the use of specific

commands as listed below.

File attribute R W E
TYPE TYPE
XFER XFER
EDIT EDIT
ASM ASM
Inhibited DOS LINK LINK
Commands DEBUG DEBUG
FROM PR
BASIC BASIC
DELETE DELETE
RENAME RENAME
" I
g:ﬁ::ﬁ d}:ASIC INPUT #() | INPUT #()
PRINT #() PRINT#()

4.3.5 File types

A file type indicates the file access method. There are two file types: sequential (S) and random (X).
Floppy DOS normally handles only sequential files. Random files can be accessed only by the DELETE,
RENAME and CHATR commands. An optional BASIC compiler is required to create, write to and read

from random files.

S¥YS-24

4.3.6 Wildcard characters

The programmer can specify two or more files at a time by specifying wildcard characters in the file
name and file mode. The wildcard characters " ? " and " > " are used for file names and " .*" is used for
file modes.
| Wildcard character " ? "

"9 " represents any one character. For example, assume that files ABC.ASC, ABC3.ASC, ABCD.RB,

XYZ.ASC and ADCN.ASC exist on the currently logged-on disk. When the command.

TYPE A?7C?.ASC

is entered, the contents of the files ABC3 . ASC and ADCN . ASC will be displayed.

‘ Wildcard character " x"

"> " Represents O or more characters.
Ak : Represents file names beginning with "A" e.g., A, A2, ABC
*2 : Represents file names ending with 2" e.g., TEST2, SAMPLE2
P>*%5: Represents file names beginning with '""P" and ending with "5" e.g., PROGRAMS, PM5
| Wildcard characters " " |

"

X" represents all file modes.

Examples: I

DELETE PROG 1. Deletes all files whose file name is PROG1
XFER > .ASC, § PTP Punches all files whose file mode is .ASC.
DIR A kB> ?3 .RB

DELETE > .k Deletes all files on the disk.

4.3.7 Drive number and volume number
A drive number refers to the drive number of a floppy disk drive (MZ-80FB or MZ-80FBK). Drive
numbers 1 through 4 are assigned device names $FD1 through $FD4 respectively.

A volume number (1-127) is a number identifying a disk. Floppy DOS checks this number for validity

each time it accesses a file.

4.3.8 Basic device name
FDOS can handle the following I/O devices:

$KB : MZ-80B system keyboard
$CRT: MZ-80B system display unit
$FDI :
$FD2 :
Floppy disk drives (MZ-80FB or MZ-80FBK)
$FD3 :
$FD4 :

$CMT : System cassette unit
$LPT : System printer (MZ-80P4 or MZ-80P5)
$MEM : A part of main memory regarded as an I/O resource.
The system automatically reserves an unused area as SMEM. This area is released by the

DELETE $MEM command or when an error occurs.

SYS-25

4.3.9 Auxiliary device name

Auxiliary devices are devices whose control programs are not resident in the Floppy DOS are in memory.

Their control programs are stored in external files. An auxiliary device name is assigned to an auxiliary

device control program using the ASSIGN command to allow IOCS to manage the control program.

$PTR :
$PTP :

$SIA .
$SIB :
$SOA :
$SOB :
SCMT1 .
$USR1 :
SUSR2 :
SUSR3 :
$USR4 :

Paper tape reader and punch. The user must prepare an interface circuit for these using a
universal interface card. The system contains their control programs, however. For details,
refer to "PAPER TAPE PUNCH AND READER INTERFACE" in the Appendix.
Serial input port A
Serial input port B)
_ The interface card for these 1/O ports is optional.
Serial output port A
Serial output port B

Cassette tape deck for the MZ-80K

These device names are provided for user-supplied I/O devices. The control program

must be supplied by the user.

To use these device names, prepare a machine language area using the LIMIT command, load the

corresponding auxiliary device control program into the area using a LOAD command and link the

program with the I/O controller of Floppy DOS using an ASSIGN command. The auxiliary device

control programs are supplied in the form of object files and ASCII files. In general, use the object files.
If you want to change the loading address, assemble and link the ASCII files with DOSEQU.LIB from

the master disk.

The loading address of each auxiliary device control program is shown below.

F300

F700
F7DA
F8B4
F98E
FCO00
FC39
FEOO
FFO0O

Example 5:

Example 6:

Notes:

3CMT1 CMT1.ASC, CMT1.0BJ

-
-

$SIA

$SIB

$S0A

$SOB

SI10.ASC, SIO.OBJ
RPTR

R T —

SPTP
Floppy DOS work area
Interrupt vector area PTRP.ASC, PTRP.OBJ

1. Memory map 2. Control programs
1> LIMIT $F300

1> LOAD CMTI1 SIO PTRP

1 > ASSIGN $CMT1 $F300 $SIA $F700 $SIB $F7DA $SOA $F8B4 $SOB
$FO98E $PTR $FCO0 $PTP $FC39

EXEC $FDI1 ; LOADAUX

All the auxiliary device control programs are loaded since file LOADAUX.ASC contains

the above commands.

1. Any file input from the keyboard (3KB) is terminated by pressing the BREAK | key. For example, exe-

cution of the command

1> XFER $KB, XYZ

is terminated when the programmer presses the BREAK | key.

SYS-26

2. The end of files from $PTR is identified by the null code (00H) following the data area (null codes in
the feed area are ignored).

3. SCMT and SMEM can be accessed only by the built-in commands and programs compiled by the BASIC
compiler. When they are used by other programs, the error message

no usable device
is issued.

4. $CMT can handle only .ASC and .OBJ mode files. $KB, $CRT, $LPT, $PTR, $PTP and $SMEM can
handle only .ASC mode files (error message "il file mode" is issued if an illegal file mode file is used
with one of these devices).

5. $PTP and $PTR automatically skip the tape feed portions.

4.3.10 Switches
Switches follow command names or arguments and specify optional command functions. There are

three types of switches.
["Global switches

Global switches are appended to command names and specify the mode in which the command is to be

executed. Two or more switches may be specified for a command as shown in Example 8. In such cases

they may be placed in any order.

Example 7: 1> DATE/P /P denotes LPT.

Global switch

Command
Example 8: 1 >LINK/P/T TEST /P denotes LPT.

LGlobal switch /T denotes the symbol table.
Invalid: 1> LINKL_./P_.A_;TJ._.ATEST
No space may appear in these positions.
[Local switches |

Local switches are appended to arguments and specify the use of the arguments.
Example 9: 1> ASM TEST,$ LPT/L,XYZ/0 /L specifies the device on which the assembly listing is

to be output.
/0 specifies the relocatable output file.

| Device switches |

Device switches are appended to device names. Their format is identical to that of local switches. The
legal device switches are /PE, /PO, /PN and / LF. These switches can be appended only to devices
$PTR, $PTP, SUSR1 ~ 4.

The meanings of the device switches are listed below,

Switch ; Input Output
/PE Specifies that data is to be checked for even parity. Specifies that even partiy is to be used. (Note)
/PO | Specifies that data is to be checked for odd parity. Specifies that odd parity is to be used. (Note)
/PN Specifies that bit 7 (MSB) of input data is to be set to 0. | (Note)
/LF | Invalid Specifies that [CR | is to be followed by [LF].

Note: An error is generated (il data) if the MSB of the data is set to 1 from the beginning (e.g., graphic characters).

sYs-27

Note:
Any switch following the first argument of the RUN command is treated as a global switch.
Example 10: 1 > RUN__, ASM48/P_.TEST, XYZ/O

Local switch
Global switch

The meanings of the individual global switches are described in the related command descriptions.

4.3.11 Default assumptions
The general format of a file specification (valid for $FD1—$FD4 and $CMT) is given below.

Example 11: FD2 ; PROG2 . ASC § CMT ; TEST2 . OBJ
Fil d Fil d
e L
Device name Device name

The programmer can omit portions of the complete file specification as explained below.
The device name may be omitted as exemplified below,
Example 12: 2> LINK TESTI1, $FD3 ; TEST2, TEST3

In the above example, the system assumes the name of the currently logged-on disk drive (identified by
"2>") before TEST1 and TEST3. Consequently, the above command line is equivalent to the following;:

2> LINK $FD2 ; TESTI, $FD3; TEST2, $FD2; TEST3

The default drive can be changed by:
1. Executing the DIR command or
2. Moving the cursor to the left of the prompt ">" and changing the drive number (e.g., changing
w2 1o M L),

| Default file name |

The file name may be omitted when reading files from the cassette tape unit ($CMT). When a file name
is omitted in the XFER command or other similar command (See example 10), the system assumes an
appropriate file name.

Example 13 : XFER $ FDI ; ABC . ASC, $ FD2

‘N}: The system assumes $FD2; ABC. ASC.

| Default file mode |

When the file mode is omitted, the system makes an appropriate default assumption according to the

command. See the individual command descriptions.
Notes:

1. Both device name and file name cannot be omitted simultaneously.
2. No file name can be assigned to devices other than $FD1 through $FD4 and SCMT.

SYS-28

4.3.12 Arguments

There are several argument formats.

1. Device name + File name + File mode
Examples : $ FDI1 ; ABC . ASC $CMT ;XYZ.0BI S§FD2; . %

2. Device name + File name. The file mode is omitted.
Examples : $FDI1 ;ABC $FD2; Ak $ CMT ; TEST

3. File name + File mode. The device name is omitted (default drive).
Examples : TEST3.RB >k.ASC PROG? . RB

4, Device name
a. When the file name and mode are omitted or when the device name proper is to be specified.
Examples: $FDI §CMT
b. When neither file name nor mode can be specified.
Examples: $PTR $CRT §LPT

5. Hexadecimal constant
Examples : $1200 $C000

6. Special arguments

Examples : Tlf% 9:30:0
‘——Argmnent
Command

LIMIT MAX

Argument
Command

SYS-29

4.4 Using DOS Commands
4.4.1 ASM Transient
Format

ASM filename

Function

The ASM command assembles the source program in the souice file specified by the argument, out-

puts the result to a relocatable file and outputs an assembly listing to the specified file or device.

| Default file mode |
.RB when local switch / O is specified; otherwise, .ASC.

Switches

Global switches:

None: A relocatable file is generated.
/N: No relocatable file is generated.
Local switches:
None: Specifies that the specified source file is to be assembled.

/0: Specifies that the relocatable code is to be output to a file under the selected name.
/E: Specifies that only error statements are to be output to the selected file or device.
LIz Specifies that the assembly listing is to be output to the selected file or device.

[Wildcard characters |
Not allowed

(1) ASM TEST
Assembles source file TEST.ASC and generates relocatable file TEST.RB.

(2) ASM TEST, $ LPT/L,XYZ/0
Assembles source file TEST.ASC, generates relocatable file XYZ.RB and outputs the assembly
listing to LPT.

(3) ASM/N TEST, $SCRT/E, $ SOA/L
Assembles source file TEST.ASC while displaying error statements (including external symbol
references) and outputting the assembly listing to SOA. No relocatable file is generated.

(4) ASM TEST, $ FD2 ; TEST1 /L, $FD2 ; TEST1 .RB/0O
Assembles source file TEST.ASC and saves relocatable file TEST1.RB and assembly listing TEST1.
ASC on FD2.

(5) ASM TEST, $ LPT/L, $ 2000
Assembles source file TEST.ASC, generates relocatable file TEST.RB and outputs the assembly
listing to LPT with a bias of 2000H added. '

SYS-30

http:TESTl.RB

4.4.2 ASSIGN Transient

Format

ASSIGN devicenamel, $nnnn, , devicenameN, $nnnn

Function

The ASSIGN command assigns logical device names to user-supplied I/O control routines.

Switches

None.

| Wildcard characters |
Not allowed.

(1) LIMIT $F000
ASSIGN $USRI1, $F000
Assigns device name $USRI1 to the user I/O control routine at address $F000.
(2) ASSIGN $USR2, $F200, SUSR3, $F400
Assigns $USR?2 to the routine at address $F200 and $USR3 to the routine at address $F400.
(3) ASSIGN $PTP, $F600
"Assigns $PTP to the new PTP routine at address $F600 in place of the PTP control routine in
Floppy DOS.

| Programming notes |

(1) When a device name is assigned more than once, the last assignment is taken.

(2) To cancel an assignment, set the address operand to $FFFF.
Example : ASSIGN $USRI, $SFFFF This command cancels $USR1.

(3) When an I/O control routine is destroyed by execution of a new LIMIT or LOAD command it is
necessary to cancel the device assignment for that routine using the above procedure.

4.4.3 BASIC Transient

Format
BASIC filename

The BASIC command compiles the source program written in BASIC language identified by the argu-
ment and outputs the BASIC listing.

| Default file mode |
.RB when local switch /O is specified; .ABC otherwise.

SYS-31

Global switches

/N: Specifies that no relocatable file is to be generated.
FC: Specifies that the BASIC listing is to be displayed on CRT.
/P: Specifies that the BASIC listing is to be printed on LPT.

(Note that switches /C and /P cannot be specified simultaneously.
Local switches

None: Specifies that the specified source file is to be compiled.
/0: Specifies that the relocatable file is to be output to the selected file.

[Wildcard characters |
Not allowed.

(1) BASIC TEST
Compiles source file TEST.ASC and generates relocatable file TEST.RB.

(2) BASIC/C TEST, XYZ/0O
Compiles source file TEST.ASC, generates relocatable file XYZ.RB and displays the BASIC listing
on CRT.

(3) BASIC/N/P TEST
Compiles source file TEST.ASC and prints the BASIC listing on LPT, No relocatable file is gene-
rated.

| Programming notes |

(1) The compiler terminates generation of the relocatable file when it detects an error during compila-
tion.
(2) The BASIC compiler is available as an option,

4.4.4 BOOT Built-in

Format
BOOT

Function |

Terminates execution of Floppy DOS and activates the MZ-80B system IPL (Initial Program Loader).

‘ Programming notes ‘

The system program is loaded into memory when IPL is activated, Therefore, former memory con-
tents (such as Floppy DOS, monitor and user programs) are cleared.

4.4.5 CHATR Built-in

Format
CHATR sign, filenamel, attributel, , filenameN, attributeN

The CHATR command changes the attributes of a specified file.

SYS-32

| Default file.mode

.ASC

None.
| Wildcard characters |

Not allowed
| File attributes |

0: None.

R : Read-protected file
W . Write-protected file
P

Permanent file

(1) CHATR KEY, TEST, R
Assigns the password "KEY" to file TEST.ASC and declares the file as a read-protected file.
(2) CHATR SECRET, TEST.OBJ, 0
Deletes the file attributes of file TEST.OBJ. The specified password, "SECRET", is matches with
the password specified for the file before the command is actually executed.
(3) CHATR
Allows the programmer to interactively specify the sign, file name and attribute in that order.
(4) CHATR sign

Allows the programmer to interactively specify the file name and attribute in that order.

ﬁ’rogrmnming note

The interrelationship of the file attributes is shown below.

X

— Set sign.
—_— Check sign.
4.4.6 CONSOLE - » Does not check sign. Built-in

Format
CONSOLE Sscrolling-start-line, endline, Ccharacter-number, R, N
Sets the scrolling area on the CRT screen, sets the number of characters per line to 40 or 80 and/or
reverses the picture.
[Default file mode |
None.

None.

SYs-33

| Wildcard characters |

None.

(1) CONSOLE S2,10
Sets the scrolling area to the area from the 2nd line through the 10th line.

(2) CONSOLE R, C80
Reverses the characters and graphic display on the screen and sets the number of characters per
line to 80.

| Programming notes |

The arguments of the CONSOLE commands can be written in any order. The modes set are effective

until they are set again.

4.4.7 CONVERT Transient

Format
CONVERT
Converts a file generated with the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series
into a file usable under Floppy DOS, or converts a file generated with Floppy DOS into a file usable
under the SB-5000 series or SB-6000 series. The relationship between file modes handled by this

command is as follows.

BASIC FDOS
BTX e ASC
BSD r—— ASC

OBJ — OBJ

| Default file mode |
None.
None.

| Wildcard characters |
Not allowed.

2 > CONVERT
Choose one from:
1:BTX - ASC
2:BTX < ASC
3 :BSD « - ASC
4 :0BJ <« — OBJ
(1~4)?
Source drive No. (1 ~4,CMT =0) 72 Enter 1 ~ 4 for the $FD and O for the $CMT.
Source file name ? SAMPLE
Destination drive No. (1 ~ 4, CMT =0) 23

SYS-34

Destination file name ? SAMPLE

End of convert

rProgramming notes ‘

(1) Never intermix D-BASIC format disks and Floppy DOS format disks. Otherwise, disk contents
may be destroyed.

(2) Since the syntax of D-BASIC and that of the BASIC compiler differ slightly, there are some
cases in which programs converted with the CONVERT command cannot be compiled by the
BASIC compiler without some modification. Use the text editor to modify such programs before
compiling them with the BASIC compiler.

(3) A BRD file cannot be converted. First convert it into a BSD file, then execute the CONVERT

command.
Refer page 65 for further information.

4.4.8 COPY Transient

Format
COPY

The COPY command copies the contents of the source disk to the destination disk. The programmer
can specify only predetermined types of disks as the destination and source disks as summarized in
the table below.

Source Destination | Allowed/disallowed Remarks
(Any diskette) Master Disallowed
Master Submaster Allowed
Master Slave Allowed The destination disk becomes a submaster disk.
Submaster Submaster Disallowed
Submaster Slave Disallowed
Slave Submaster Allowed The destination disk becomes a slave disk.
Slave Slave Allowed

It is desirable to create a submaster disk from the master disk using the COPY command and to use
this submaster disk during normal operation. It is also desirable to make copies at appropriate times
when the original disk is updated to prevent errors due to physical defects in the disk or software
errors or inadvertent use of the DELETE command.

| Default file mode |
None.
None.

I Wildcard characters

None.

(1) Floppy DOS always copies from $FD1 to $FD2 when the system has two or more floppy disk units.

2> COPY

Destination disk’s sign 7BACKUP < Proceeds to the next step if the passwords match.

Insert source into $FD1 < Insert the source disk in drive FD1.

Destination into $FD2, {} space key < Insert the destination disk in drive FD2, then press the j key.
2> Copying is completed.

SYS-35

4.4.9 DATE Built-in

Format
DATE mm.dd.yy

The DATE command sets or displays the system calender date in the month . date . year format.

This information is assigned to each file when it is saved on a disk. The date is not automatically

updated, however,

| Default file mode
None.

Global switch /P: Specifies that the date is to be printed on LPT.

| Wildcard characters |
Not allowed.

(1) DATE 11.20.81

Sets the system calender date to November 20th, 1981
(2) DATE

Displays the current date on CRT.
(3) DATE/P

Prints the current date on LPT.

SYS-36

http:11.20.81
http:mm.dd.yy

4.4.10 DEBUG Transient

Format

DEBUG filenamel, , filenameN
The DEBUG command links and loads relocatable files specified by the arguments to form an object
program in memory for debugging.

| Default file mode|
.OBJ when local switch /O is specified; .RB otherwise.
Global switches

None: Specifies that only the link information is to be displayed on CRT,

/T: Specifies that the symbol table information is to be output (on CRT unless global switch
/ P is specified).
/ P: Specifies that the link and symbol table information is to be printed on LPT when global

switch /T is specified.
Local switch
/0: Specifies that the object file is to be created under the selected file name.

| Wildcard characters—‘
Not allowed.

Examples I

(1) DEBUG TEST1, TEST2
Links and loads relocatable files TEST1.RB and TEST2.RB and waits for a debugger command.
The link information is displayed on CRT.

(2) DEBUG/T/P TEST, TEST/0
Loads relocatable file TEST.RB, prints the link and symbol table information on LPT and gene-
rates object file TEST.OBJ.

(3) DEBUG TEST1, $1000, TEST2, TBL $20
Links and loads relocatable files TEST1.RB and TEST2.RB and reserves $1000 bytes of free area
in memory between them. The symbol table size is set to $2000 (approximately 8K bytes).

When the table size is not specified, the debugger automatically allocates 6K bytes for it.
(4) DEBUG
Invokes the symbolic debugger and enters the command mode.

8YS-37

http:TEST2.RB
http:TESTI.RB
http:TEST2.RB
http:TESTI.RB

4.4.11 DELETE Built-in

Format
DELETE filenamel, , filenameN

The DELETE command deletes the files specified by the arguments except those with the W or P file

attribute.
| Default file mode |
.ASC

[Switches

Global switches /C : When this switch is specified, the system displays each file on CRT for confir-
mation. The file is deleted when the programmer presses the [Y key and
skipped when he presses the [N] key.

/N : Specifies that no deleted file is to be displayed. (The programmer must not
specify /N and / C simultaneously.)

| Wildcard characters|
Allowed.

(1) DELETE TEST. *
Deletes all files whose file name is TEST.
(2) DELETE /C > .OBJ
Displays all files with a file mode of .OBJ on CRT for confirmation before deleting them.
(3) DELETE $FD2; * . *
Deletes all files on FD2 except those with the file attribute P or W. To delete file-protected file,
it is necessary to cancel the file protect attributes with the CHATR command.
(4) DELETE $ MEM
Deletes file $ MEM.

4.4.12 DIR Built-in

Format
DIR devicename (filename)
|
Displays the contents of the directory specified by devicename of filename. "devicename' must refer
to a floppy disk unit.
LDefault file modeJ
K

Global switch /P : Specifies that the directory is to be printed on LPT.

SYs-38

|i\’ildcard characters‘
Allowed.
(1) DIR $FD2
Displays the file information of all files on the disk in FD2 on CRT . FD2 is designated as the

default drive.

(2) DIR/P
Prints the file information of all files on the disk in the current default drive on LPT. The
directory device remains unchanged.

(3) DIR TEST
Displays on CRT the file information of all files on the disk in the current default drive whose

file name is TEST.
(4) DIR $FD2 ;> . ASC
Displays the file information of all source files on the disk in FD2 on CRT. FD2 is designated

as the default drive.

‘ Programming notes ‘

sect AT filename mm.dd.yy
2>10 RS TEST. ASC /10.25.80
- i File mode
NT' L File name m creation (October 25th, 1980)
File type (sequential file) (/77.22.77 appears if unknown)

File attribute (read protected)
Number of sectors used
Drive number

4.4.13 EDIT Transient

Format
EDIT filename

Function

The EDIT command invokes the text editor to create a new source file or edit an existing source file,
| Default file mode |
LASC
None.
| Wildcard characters |
Not allowed.
Examples
(1) EDIT
Invokes the text editor and enters the command mode.
(2) EDIT TEST
Invokes the text editor, reads source file TEST. ASC and enters the command mode.
(3) EDIT $FD2 ; TEST
Invokes the text editor, reads source file TEST. ASC from the $FD2 and enters the command

mode.

SYS-39

4.4.14 EXEC Built-in

Format

EXEC filename
The EXEC command executes the contents of the file specified by the argument as Floppy DOS
commands. A device name may be specified in place of filename. Files containing Floppy DOS com-
mand are called EXEC files.

[Default file mode |
.ASC
None.

| Wildcard characters |
Not allowed.

:
(1) EXEC MACRO :

Executes the contents of source file MACRO.ASC assuming that the file consists of DOS com-
mands. When the file MACRO.ASC contains the command lines shown below, the system executes

the commands in sequence from the top to the bottom.

ASM $FD2 ; TEST

LINK/T/P $FD2 ; TEST

CHATR KEY, $FD2 ; TEST.OBJ, W
RUN §$FD2 ; TEST

3 >FREE

DIR /P $FD2

(2) EXEC MYDEVICE
Sequentially executes the command lines contained in source file MYDEVICE.

LIMIT $F000 < Limit the Floppy DOS area to $F000.
LOAD MYPRINTER < Set the loading and execution addresses to $F000,
LOAD MYLIGHTPEN + Set the loading and execution addresses to $F800.

ASSIGN $USR1, $F000, $USR2, $F800 < Assign user I/O names to user programs.

(3) EXEC ABC
Executes the routine in file DEF repeatedly if file ABC.ASC contains the following routine.

RUN DEF
EXEC ABC

SYS-40

l Programming notes ‘

(1) Since the EXEC command executes the commands specified in a file as macro commands, it

cannot be specified on a multistatement line as shown below.
EXEC MACRO : TYPE MACRO

(2) The specified file may have the file attribute R, W or P. However, execution of files with the
attribute R or P is not displayed.

(3) When an error occurs during execution of an EXEC file, the system immediately terminates pro-
cessing and waits for entry of a new Floppy DOS command from the keyboard.

(4) When the file name START-UP is assigned to an EXEC file, that file will be automatically exe-
cuted when Floppy DOS is activated.

4.4.15 FAST Built-in

Format
FAST
Fast-forwards the cassette tape. Control is given to the next command as soon as the fast-forward

operation has been started.

4.4.16 FORMAT Transient

Format
FORMAT S$FDn

The FORMAT command formats (initializes) a new diskette.
The user must always format new disks before using them.
| Default file mode

None.

None.
| Wildcard characters |
Not allowed.

(1) FORMAT S$SFD2

Floppy DOS disk formatting

Insert disk into $FD2, & space key

New sign ? SHARP

Volume No. ? 50

END

Insert disk into $FD2, & space key

Break «—Press the[BREAK|Key to return to FDOS.

SYSs41

The above interaction shows an example of formatting a completely new disk.

"sign" prompts for a password to be given at the disk. When this disk is resubmitted for for-
matting, the system checks for a password match before actually reformatting the disk. "Volume
No." prompts for a volume number to be assigned to the disk. The programmer can specify any

number from 1 to 127. The volume number should be unique.

(2) FORMAT
Floppy DOS disk formatting
Insert disk into $FD1. J space key
0ld sign ? SHARP «— The system matches the password entered with that stored on the disk and proceeds to
the next step if they match.
New sign ? MZ-80 <— Set a new password.
Volume No.? 127
END
Insert disk into $FD1, & space key
Break <— Press the key to return to Floppy DOS.

The above interaction shows an example of reformatting a previously formatted disk. The

meanings of "sign" and " Volume No." are identical to those in example (1).

l Programming notes|

The following message will be displayed if a disk cannot be initialized because of defects, etc.

(1) bad track #nn
When this message is displayed, the XFER command can be executed for the disk but the COPY
command cannot.

(2) no usable disk
When this message is displayed, this disk is not usable.

4.4.17 FREE Built-in

Format

FREE $FDn
The FREE command displays the number of used sectors, the number of unused sectors, and/or the
volume number of the disk in the specified floppy disk unit.

| Default file mode |
None,
Global/P : Specifies that the disk usage information is to be printed on LPT.

| Wildcard characters ‘
Not allowed.

sSYSs-42

Examples
(1) FREE $FD2
$FD2 vol:127 left: 1072 used: 48
(2) FREE/P
Prints the same information as given in example (1) on LPT, except that the information pertains
to the disk in the default drive.

| Programming note |

A disk is comprised of 1120 sectors (each consisting of 256 bytes). Of these 1120 sectors,-however,
48 sectors are reserved by the system as Floppy DOS areas. Consequently, used: 48 is indicated for new
disks.

4.4.18 HCOPY Transient

Format
HCOPY display page

Function

Copies one frame from the CRT screen on the LPT.

| Default file mode |
None.
None.

| Wildcard characters |
Not allowed.

Examples:

HCOPY 1 Copies character data from the CRT screen on the LPT.
HCOPY 2 Copies the display data in graphic area 1 on the LPT.
HCOPY 3 Copies the display data in graphic area 2 on the LPT.

HCOPY 4 Copies the display data onto the LPT when the contents of graphic areas 1 and 2 are

displayed simultaneously.

4.4.19 KEY Built-in

Format
KEY keynumber ="S"

Assigns a function to the definable function key indicated by a key number from 1 through 20. The
function is specified by writing a string or command name enclosed in double quotation marks.

| Default file mode |
None.

Switches
Global /P : Printed on LPT
| Wildcard character |
None.

SYsS-43

| Examples:

KEY1 ="XFER"
KEY 7 ="DELETE"
KEY 13 ="$KB"
KLIST

KEY 1 ="XFER"
KEY 7 ="DELETE"
KEY 13 ="$KB"

KEY20=" "

| Programming notes |
Definable function keys 11 through 20 are activated by pressing the | SHIFT | key and one of keys

'F1] through simultaneously.

4.4.20 KLIST Built-in

Format
KLIST

Lists the definition status of the definable function keys.
| Default file mode |
None.

None,
| Wildcard character |
None,

KLIST
KEY 1="RUN"
KEY 2="XFER"
KEY 3="DELETE"
KEY 4="RENAME"

KEY §="DIR"
KEY 6="EDIT"
KEY 7="ASM"
KEY 8="LINK"

KEY 9="DEBUG"
KEY 10 ="BASIC"
KEY 11 ="$FD1;"

SYS-44

4.4.21 LIBRARY Transient

Format

LIBRARY filenamel, , filenameN

The LIBRARY command reads the relocatable files specified by the arguments to form a library file.
I Default file mode

.LIB when local switch /O is specified; .RB otherwise.

Switches

Global switches

None: Link information pertaining to the relocatable files is displayed on CRT.
K P: Specifies that the link information is to be printed on LPT.
Local switches
None: The first filename specified is used as the name of the library file.
/0: Specifies that the library file is to be created with the selected file name.
| Wildcard characters |

Not allowed.

(1) LIBRARY TESTI1, TEST2
Reads relocatable files TEST1.RB and TEST2.RB to generate library file TEST1. LIB. The link
information is displayed on CRT.

(2) LIBRARY /P TEST1.LIB, TEST2, XYZ /O
Reads relocatable files TEST1.LIB and TEST2.RB and generates a library file named XYZ.LIB.
The link information is printed on LPT.

4.4.22 LIMIT Transient

Format
LIMIT $nnnn
The LIMIT command sets the Floppy DOS area boundary at address $nnnn.
Default file mode |
None.
None.
| Wildcard characters

None,

SYS-45

http:TEST2.RB
http:TEST2.RB

(1) LIMIT $F000
Limits the Floppy DOS area to $F000 and frees the higher area.

(2) LIMIT MAX
Sets the Floppy DOS area to the maximum available address.

| Programming note |

The LIMIT command cannot be specified in a multistatement as shown below.
Illegal: LIMIT $EO000 : DIR $FD2

4.4.23 LINK Transient

Format

LINK filenamel, , filenameN
The LINK command links the relocatable files specified by the arguments to generate an object or
system file.

| Default file mode |
.OBJ when local switch /O is specified; .RB otherwise.
Global switches

None: Only the link information is displayed on CRT.

v i Specifies that the symbol table is to be output (on CRT unless global switch /P is
specified).

/P: Specifies that the link and symbol table information is to be output to LPT (when global
switch /T is specified).

/S: Specifies that a system file is to be generated.

Local switches
None: The first filename specified is used as the name of the object file.
/0: Specifies that the object file is to be created under the specified file name. If global

switch /S is specified, specifies that the system file is to be created under the specified

file name.

[‘Wildcard characters |
Not allowed.
(1) LINK TESTI1, TEST2
Links relocatable files TEST1.RB and TEST2.RB and generates an object file named TEST]I.
OBI. The loading and execution addresses of the object file are automatically set to the beginning

address managed by Floppy DOS. The link information is displayed on CRT.

(2) LINK/T/P TEST1, TEST2, XYZ /O
Links relocatable files TEST1.RB and TEST2.RB and generates object file XYZ.0OBJ. The loading
and execution addresses of the object file are set to the beginning address managed by Floppy

DOS. The link and symbol table information is output to LPT.

SYS-46

http:TEST2.RB
http:TESTl.RB
http:TEST2.RB
http:TESTl.RB

(3) LINK $C000, TEST, DOSEQU.LIB, EXECS$C100
Links TEST.RB and DOSEQU.LIB and generates object file TEST.OBJ, specifying $C000 and the
loading address. The execution address of the object file is $C100.

(4) LINK TESTI1, $1000, TEST2, TBL $20
Links file TEST1.RB (specifying the beginning of the Floppy DOS area as the loading address),
then links and loads file TEST2.RB, reserving $1000 bytes of free area between the two files. The
symbol table size is set to 8K (§2000) bytes.

4.4.24 LOAD Transient

Format
LOAD filenamel, , filenameN
The LOAD command loads the object files specified by the arguments in areas outside the area
managed by Floppy DOS.
| Default file mode |
.OBJ
None.
| Wildcard characters
None,
(1) LOAD TESTI1, TEST2
Loads object files TEST1.0BJ and TEST2.0BJ into memory areas outside the area managed by

Floppy DOS. The programmer must create object files so that they are to be loaded in appropriate
addresses.

4.4.25 MLINK Transient

Format
MLINK filenamel, , filenameN
The MLINK command links the relocatable files specified by the arguments to generate an object file.
| Default file mode |
.OBJ when local switch /O is specified; .RB otherwise.
Global switches
None: Only the link information is displayed on the CRT,

T Specifies that the symbol table is to be output (on the CRT unless global switch /P is
specified).
v ¢ Specifies that the link and symbol table information is to be output to the LPT (when

global switch /T is specified).
Local switches
None: The first file name specified is used as the name of the object file.

/0: Specifies that the object file is to be created under the selected file name,

SYSs-47

http:TEST2.RB
http:TESTI.RB

Wildcard characters \
Not allowed,
2> MLINK STARTREK
‘ Programming notes |
(1) The MLINK command can be used in the same manner as the LINK command except that it
cannot specify the table size (TBL$hh).
(2) The LINK command can generate an object file of up to approx. 36K bytes. The MLINK com-

mand is used when the file exceeds this size to generate object files of up to approx. 46K bytes.
However, the MLINK command takes twice as long as the LINK command to generate an object
file because the MLINK command links relocatable programs using a 2-pass system. The following

diagrams show memory maps applicable to execution of the LINK and MLINK commands.

Monitor Monitor
2A0H 12A0H
124 Floppy DOS Floppy DOS
LINKER MLINKER The object
. program is
Link area } The object pro- Symbol table generated
gram is gene- on the
Symbol table rated in this area, Unused disk.
then saved on
Stack area the disk. Stack area
Reserved Reserved
FEOOH FEOOH
LINK command MLINK command
4.4.26 MON- Built-in
Format
MON

Function

The MON command returns control to the monitor.

| Programming notes |
Control is transferred to Floppy DOS from the monitor with the following monitor command.
*J
J-adr.$12A0

SYs-48

4.4.27 PAGE Transient

Format
PAGE output-device or PAGE n
The PAGE command carries out a paging operation on the output device specified by output-device,
or sets the number of lines per page on LPT.
| Default file mode |
None.

None,

" Wildcard characters

None.
(1) PAGE or PAGE $ LPT

Carries out a form feed on LPT,
(2) PAGE $ PTP

Produces a feeder tape on PTP.

(3) PAGE 22
Sets the number of lines per page on the LPT to 22. The print form is fed to the top of the next
page when a page feed code is issued or the TOP OF FORM button is pressed.

4.4.28 POKE Built-in
Format
POKE $nnnn, datal, , $uuuu, dataN
Stores datal consisting of an even number of digits in and from address $nnnn (4-digit hexadecimal
number) on, and stores dataN consisting of an even number of digits in and from address $uuuu
on. Any address is accessible. The maximum length from POKE to dataN is 160 characters including
ODH, space, etc.

[Default file mode |

None.

None.

| Wildcard characters |

None.
POKE $000D, 2010, $000F, 40

Stores 20 in address $000D, 10 in $000E and 40 in $000F.
POKE $000D, 1235678, 12, $000F, 40

Not allowed
sSYS-49

4.4.29 PROM Transient

Format
PROM

Function

The PROM command converts the format of the object file to an appropriate PROM writer format.
| Default file mode |

None.

(1) PROM
Invokes the PROM formatter program and enters the command mode. Refer to the "PROM For-

matter' manual for further information.

4.4.30 RENAME Built-in

Format
RENAME oldnamel, newnamel, , oldnameN, newnameN

Function

The RENAME command renames specified files.
| Default file mode |

Switches

I’>
2]
A

None.
| Wildcard characters
An asterisk may be used to specify the file mode (. %).

1
s

o

w

xam
(1) RENAME TEST1, TEST2
renames TEST1.ASC to TEST2.ASC.
(2) RENAME S$FD2 ; TEST1 . OBJ, TEST2, TEST3 . RB, TEST4
Renames TEST1.0BJ on the disk in FD2 to TEST2.0BJ and TEST3.RB on the disk in the default
drive to TEST4.RB.

SYS-50

http:TEST4.RB
http:TEST3.RB

| Programming notes
(1) Files with the file attribute W or P cannot be renamed.
(2) The command RENAME $FD2;TESTI1, $FD2;TEST2 cannot be executed since $FDn specified
for the old name applies to the new name, which is illegal.
(3) The command RENAME TEST1.LIB, TEST2.RB cannot be executed since the file modes of the
old and new names disagree.
(4) The command RENAME TEST.LIB, TEST2 can be executed normally. The new name is assigned

the file mode of the old name.

4.4.31 REW Built-in

Format
REW
Rewinds the cassette tape.Control is transferred to the next command as soon as the rewind operation

has been started.

4.4.32 RUN Built-in

Format
RUN filename or file name
The RUN command executes the program in the object file specified by the argument.
| Default file mode |
.OBJ, .SYS
None.
" Wildcard characters |

None.

SYs-51

http:TEST2.RB

(1) RUN TEST
Executes the program TEST.OBJ. When its loading address is such that it overwrites the Floppy
DOS area, the system issues the message
destroy Floppy DOS ?
on the CRT. When the programmer press the Y] key, the system loads the program, overwriting
the Floppy DOS area and executing it. When the programmer presses the [N key, the system issues
the error message ""'memory protection" and waits for a new DOS command.
(2) 1 > TEST
Accesses the drive 1 to seek .SYS mode file and executes it if found. If not found, error occurs.
(3) 2] TEST
Accesses drive 2 to seek program TEST.SYS and executes it if found. If not found, it seeks TEST

.OBJ and executes it if found. If not found, error occurs.

| Programming notes |

The meanings of the prompt symbols (> and]) are shown below.

> if found. If not found,
€ITOT OCCUrs.

it if found. If not
found, error occurs.

e s _ e RUN $FDn :
: Command filename RUN ﬁ]_.ename Slenas RUN $nnnn
; .SYS
File mode "OBJ . 0OBJ .0OBJ
I Accesses the drive 1 Accesses the default Accesses $FDn to
to seek . SYS mode drive to seek . OBJ seek . OBJ mode
Prompt file and executes it mode file and executes | file and executes it Calls address $nnnn.

if found. If not
found, error occurs.

Accesses the default
drive to seek . SYS
mode file and executes
it if found. If not

Prompt found, it seeks . OBJ Same as above. Same as above, Same as above.
mode file and executes
it if found. If not
found, error occurs.
4.4.33 SIGN Transient
Format
SIGN S$FDn

The SIGN command defines or changes the password and/or volume number of the disk in the speci-
fied drive.

| Default file mode |
None.

None.

LWildcard characters

None.

S¥S-52

(1) SIGN

Old sign ? SHARP < Proceeds to the next step if the password entered matches the old password.
New sign ? MZ-80

New volume No ? 79
The above interaction changes the password from "SHARP'" to ""MZ-80" and defines the volume number as 79.

4.4.34 STATUS Transient

Format

STATUS devicename, $nnnn
The STATUS command displays or sets the control status of the specified device. The control status
information is used to initialize the I/O controllers. Refer to "User I/O Routine" in Appendix for
details.

Default file mod?l
None.

None.

" Wildcard characters |

None.
| Examples |
(1) STATUS $SOA, $SODCC
Sets the SOA control status to ODCC (hexadecimal).
(2) STATUS SUSRI1
Displays the control status of USR1 on CRT.
(3) STATUS SLPT, $0000

00 normal mode
12 double-size mode
14 reduced mode

\ Programming note \
This command is available for the serial I/O devices ($SIA, $SIB, $SOA and $SOB), $LPT and user

devices (SUSR1 to $USR4). Any STATUS command set for $CMT1, $PTR, $KB, $CRT, $FDI1 to
$FD4, $SCMT, SMEM or $PTP will be invalid.

4.4.35 TIME Built-in
Format
TIME mm : dd : ss
The TIME command sets or displays the time of the system clock.
| Default file mode

None.

Switches

Global switch / P: Specifies that the time is to be printed on LPT.
| Wildcard characters

None. SYS-53

Examples

(1) TIME 20 :30:40

Sets the system clock to 20 hours, 30 minutes and 40 seconds.
(2) TIME

Displays the current time on CRT.
(3) TIME/P

Prints the current time on LPT

4.4.36 TYPE Built-in

Format
TYPE filenamel, , filenameN
The TYPE command outputs contents of the files specified by the arguments on the CRT or LPT
device.
| Default file mode |
. ASC
Global switch /P: Specifies that the file contents are to be printed on the LPT device.
| Wildcard characters
Allowed.
" Examples |
(1) TYPE TEST
Displays the contents of source file TEST . ASC on CRT,
(2) TYPE/P TESTI1, TEST2
Prints the contents of source files TEST1 . ASC and TEST2 . ASC on LPT.

4.4.37 VERIFY Transient

Format
VERIFY sourcefile 1, destinationfile 1, , sourcefileN, destinationfileN

The VERIFY command compares the contents of the source and destination files specified by the
arguments and displays any mismatching contents on a line basis (if their file mode is .ASC) or on a
byte basis (if the file mode is other than .ASC).

| Default file mode |
. ASC
Global switch /P: Specifies that the matching results are to be printed on LPT.

| Wildcard characters |

Allowed for source files (see example (4) below).

SYS-54

Examples

(1) VERIFY TESTI1, TEST2
Matches source files TEST1.ASC and TEST2.ASC and displays mismatching lines on CRT.

(2) VERIFY /P $CMT ; XYZ, SFD2 ; TEST
Matches source file XYZ.ASC on CMT with source file TEST.ASC on the disk in FD2 and prints
the results on LPT.

(3) VERIFY $CMT, $FD2
Matches the first file on CMT with the file on the disk in FD2 which has the same name as the

file on CMT. An error is generated if file on CMT has no file name.

(4) VERIFY $CMT ; TEST %, $SFD2
Matches the first file on CMT whose name matches TEST > with the file that name on the disk

in FD2. Note that only the first file whose file name matches TEST > is taken.

4.4.38 XFER Built-in

Format
XFER sourcefilel, destinationfilel, , sourcefileN, destinationfileN

Function

The XFER command transfers the contents of source files to destination files.
| Default file mode |

. ASC

None.
| Wildcard charact@

Allowed for the source files (see example (5) below).

(1) XFER TESTI, TEST2
Transfers the contents of source file TEST1.ASC to TEST2.ASC.
(2) XFER S$PTR, SLPT
Reads the file on PTR and prints it on LPT.
(3) XFER $CMT ; XYZ.0BJ, $FD2
Reads object file XYZ.0OBJ from CMT and creates object file XYZ.0BJ on $FD2.
(4) XFER $CMT, $FD2
Reads in the first file on CMT and creates a file with that file name on the disk in FD2. An error
is generated if file on CMT has no file name.
(5) XFER $CMT ; TEXT %, $FD2
Reads in the first file on CMT whose file name matches file name TEST> and creates a file with
the same name on the disk in FD2. Note that only the first source file on CMT whose file name

matches TEST >k is taken.

SYS-55

(6) XFER $KB, TEST
Reads a file from the system keyboard and creates source file TEST.ASC. The file read from the
keyboard is terminated by pressing the [BREAK] key.

(7) XFER SFD2; * . ASC, $FD3
Transfers all source files on the disk in FD2 to that in FD3. The source drive must not contain
files with the file attribute R or P.

(8) XFER x ., x ,FD2
Transfers all files on the disk in the current default drive to that in FD2. The source drive must
not contain files which have the file attribute R or P.

SYS-56

4.5 DOS Command Summary

The DOS commands are broadly divided into built-in commands (Table 4-1) and transient commands
(Table 4-2). Transient commands are implemented in relocatable file form on the Floppy DOS disk.
They are loaded into the transient area in main memory by the boot linker and linked to the Floppy DOS
main program as required.

In the command format in Table 4, the items enclosed in brackets are optional.

Table 4-1 Built-in commands

BOOT

Terminates the Floppy DOS and activates system IPL.
Example: BOOT o

CHATR sign, filenamel, attribute [, ...filenameN, attribute]

Matches the password’s sign and changes the file attribute(s) of the matching file(s) identified by filename to

attribute(s).
P: Permanent file R: Read inhibit
0: No protection W: Write inhibit

Examples: CHATR KEY, ABC, 0, XYZ, P : Deletes the file attribute of file ABC and changes the file attribute
of file XYZ to PERMANENT if matches cccur with the password
KEY.
CHATR KEY, $FD2 ; UVW, R o~ : Changes the file attribute of file UVW in FD2 to READ INHIBIT
if a match occurs with the password KEY.
CHATR o : This allows the programmer to interactively specify the password,
file name and attribute.

CONSOLE Sscrolling start-line, end-line [, Ccharacter-number, R, N]

Sets the scrolling area on the CRT screen, sets the character display mode and/or reverses the picture on the screen.
Example: CONSOLE C80 . : Sets the number of characters per line to 80.
CONSOLE R ~ : Reverses the picture on the screen,

DATE [MM.DD.YY]

Displays the current date or sets the specified date in month, date, year format. The set information is used as file
information when new files are created.

Global switch / P : Specifies that the date is to be printed on the LPT.
Examples: DATE/Po : Lists the current date on the LPT.
DATE 12.25.80. : Sets the current date to December 25, 1980.
DELETE filenamel [, ..., filenameN] @, %)

Deletes the file(s) specified by filename(s).

Global switch / C : Specifies that each file name is to be displayed on the screen for
verification. The programmer must enter Y to delete it or N to
suppress deletion.

Examples: DELETE ABC. * J : Deletes all files identified by ABC. > .
DELETE/C A X . X J : Displays files identified by A > . >< on the screen for verification
before deletion.
filename : ABC.ASC deleted < Indicates that the file is deleted since 'Y " is entered.
filename : ABC.RB < Indicates that the file is not deleted ' N"' is enterd.

filename : AXY.OBJ permanent < Indicates that the file is not deleted because it is assigned the
PERMANENT file attribute.

SYS-57

Table 4-1 Built-in commands cont.

DIR [$FDn] or [filename] ?,%)
Displays file information in the directory specified by $FDn or of the file specified by filename on the screen.
Global switch /P : Specifies that the file information is to be output to LPT. The file information is displayed
on the screen when this switch is not specified.
Examples: DIR : Displays all file information in the current directory on the screen,
DIR/P $FD2 » : OQutputs all FD2 file names to LPT and switches the currently logged
disk to FD2.
DIR $FD2 ; ABC. >k < : Displays the file information of files in FD2 identified by ABC. > .
EXEC filename
Executes the contents of the file identified by filename as DOS commands.
Example: EXEC ABC.ASC < :-Sequentially executes the DOS commands in file ABC.
FAST

Fast forwards the cassette tape.
Example: FAST <

FREE [SFDn]

Lists statistical information about the disk identified by $FDn on the screen or on the LPT.
Example: FREE $FD2 <
$FD2 master left : XXXX used : YYYY
Indicates that the diskette on FD2 is a master disk, that the number of unused sectors is XXXX
and that the number of used sectorsis YYYY.

KEY keynumber="S§"

Assigns a function to the definable function key indicated by a keynumber from 1 through 20. The function is
specified by writing a string or command name enclosed in double quotation marks,
Example: KEY 1 ="RUN}" o : Assigns the function of the RUN command to key 1.

KLIST

Lists the definition status of the definable function keys on the screen.
Example: KLIST

MON

Terminates Floppy DOS processing and returns control to the monitor.
Example: MON ./

POKE $nnnn, data [, ..., Suuuu, dataN]

Stores data in the specified addresses in memory.
Example: POKE $000D, 2010, $000F, 40 <

RENAME oldnamel, newnamel -[, .., 0ldnameN, newnameN]

Renames the file specified by oldname to newname.
Examples: RENAME ABC, XYZ ./ : Renames file ABC to XYZ,
RENAME ABC, DEF, UVW, XYZ - : Renames file ABC to DEF and UVW to XYZ.

SYS-58

Table 4-1 Built-in commands cont.

REW

Rewinds the cassette tape.
Example: REW

RUN filename

Executes the program in the object file identified by filename.
Example: RUN ABC < : Executes the program in file ABC, assuming it ot be ABC.OBJ.

TIME [HH : MM : SS]

Displays the current time or sets specified time in hour, minute, second format.
The current time is set to 00 : 00 : 00 upon system start.

Global switch /P : Specifies that the current time is to be listed on the LPT.
Examples: TIME/P . : Lists the current time on the LPT.
TIME 16 :30:30 : Sets the current time to 16 : 30 : 30
TYPE filenamel [, ..., filenameN] , %)
Lists the contents of the file(s) identified by filename(s) on the screen or on LPT.
Global switch /P : Lists the file contents on LPT.
Examples: TYPE ABC, DEF J : Displays the contents of files ABC and DEF on the screen.
TYPE/P §FD3 ; XYZ < : Lists the contents of file XYZ in FD3 on LPT.
TYPE $PTR <~ : Reads paper tdpe data from PTR and displays it on the screen.
XFER sourcefilel, destinationfile2 [, ..., sourcefileN, destinationfileN| (sourcefile only ? , >k)
Transfers the source file(s) to the destination file(s).
Examples: XFER ABC, XYZ < : Copies file ABC to XYZ.
XFER $PTR, DEF < : Transfers the file at the PTR to file DEF.
XFER XYZ, $PTP/PE : Transfers file XYZ to the PTP with even partiy in ASCII code.

SYS-59

Table 4-2 Transient commands

ASM filename

Assembles the source file identified by filename and produces a relocatable file and an assembly listing,

Global switch (none) : Specifies that the relocatable file is to be output.

Global switch/N : Suppresses generation of the relocatable file.

Local switch/0 : Specifies that the relocatable file is to be output with the specified file name.

Local switch/E : Specifies that error statements are to be output to the specified file.

Local switch/L : Specifies that the listing is to be directed to the specified file.

Examples: ASM ABC < : Assembles source file ABC and generates relocatable file ABC.RB.
ASM/N ABC, $CRT/E » : Assembles source file ABC and displays error statements on the

screen (no relocatable file is created).
ASM ABC, XYZ/0,$LPT/L . : Assembles source file ABC and generates relocatable file XYZ.RB
and an assembly listing on the LPT.
ASM ABC, $FD2 ;XYZ/L,SLPT/E . : Assembles source file ABC outputs the assembly listing to
file XYZ.ASC in FD2 and outputs error statements on the

LPT.
ASSIGN devicename, address
Sets the address of a user device drive routine.
Example: ASSIGN $USRI1, $B000 : Sets the drive routine address of user device $USR1 to BOOO
(hexadecimal).

BASIC filename

Invokes the BASIC compiler to compile the source program identified by filename.
Example: BASIC XYZ < : Invokes the BASIC compiler, compiles source file XYZ.ASC and generates relocata-
ble file XYZ.RB.

CONVERT

Converts a file generated with the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series into a file which
can be used under Floppy DOS, or converts a file generated with Floppy DOS into a file which can be used under
the SB-5000 series BASIC interpreter or the D-BASIC SB-6000 series.

Example: CONVERT .

COPY

Copies the files on the disk in drive 1 to the disk in drive 2. The system matches the passwords in these disks
before carrying out a copy operation.
Example: COPY <

DEBUG filename [, ..., filenameN]

Invokes the symbolic debugger and links and loads relocatable file(s).

Global switch /T : Specifies that the symbol table information is to be output.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if omitted).

Local switch /O : Specifies that the object file is to be generated with the specified file name.

Example: DEBUG ABC, DEF o : Invokes the symbolic debugger, links and loads relocatable files ABC

and DEF and waits for a symbolic debugger command.

EDIT [filename]
Loads the text editor and reads in the file (if specified). The file must be an ASC mode file.
Examples: EDIT ./ : Loads the text editor and waits for an editor command.
EDIT $FD2 ; ABC » : Loads the text editor and reads in file ABC from FD2.

SYS-60

Table 4-2 Transient commands cont.

FORMAT [$FDn]

Initializes the disk in $FDn in the system format. The password set by the SIGN command is checked before

execution.
Examples: FORMAT < : Initializes the currently logged-on disk.
FORMAT $FD2 o : Initializes the disk in FD2,
HCOPY n

Copies a data frame from the CRT screen to the LPT.
Examples: HCOPY 4 ~ : Copies a data frame from the CRT where the contents of graphic areas 1 and 2 are
displayed simultaneously.

LIBRARY filenamel [, ..., filenameN]

Links specified file(s) into a library file.

Global switch (none) : Specifies that the link information is to be displayed on the screen.
Global switch /P : Specifies that the link information is to be printed on the LPT.
Examples: LIBRARY ABC, DEF, » : Links relocatable files ABC and DEF and stores their contents into

library file ABC.LIB
LIBRARY ABC, DEF, XYZ /0 : Links relocatable files ABC and DEF and stores their contents

into library file XYZ.LIB.
LIMIT address
Sets or changes the end address of the memory area managed by Floppy DOS.
Examples: LIMIT $B00O0 « : Sets the Floppy DOS area to BO0O (hexadecimal).
LIMIT MAX < : Sets the Floppy DOS area to the maximum available address.

LINK filenamel [, ..., filenameN]

Links relocatable files identified by filenamel through filenameN and outputs an object file with a link table listing.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be directed to the LPT (the listing is displayed on the
screen if the switch is omitted).

Global switch /S : Specifies that a system file is to be generated.

Examples: LINK ABC, DEF » : Links relocatable files ABC and DEF and outputs object file ABC.OBJ

LINK/T/P ABC, DEF, XYZ /0J: Links relocatable files ABC and DEF and outputs object file XYZ.
OBJ with the link table information on the LPT.

LOAD filename
Loads the object file identified by filename into the area immediately following the area established by the LIMIT
command.
Example: LOAD ABC.OBJ < : Loads object file ABC.OBJ into memory.

MLINK filenamel [, ..., filenameN]

Links relocatable files identified by filename1 through filenameN and outputs an object file with a link table listing.
This command can link files to generate an object file of up to 46K bytes, although the LINK command can only
deal with up to 36K bytes.

Global switch /T : Specifies that the symbol table information is to be listed.

Global switch /P : Specifies that the listing is to be output on the LPT (the listing is displayed on the
screen if this switch is omitted).

Example: MLINK ABC, DEF » : Links relocatable files ABC and DEF and outputs object file ABC.OBJ.

SYS-61

Table 4-2 Transient commands cont.

PAGE [output-device] or nn

Performs a form feed operation on the output deyvice identified by output-device, or sets the number of lines per page

on the LPT.
Examples: PAGE : Moves the print position to the home position of the printer form.

PAGE 22 : Sets the number of lines per page on the LPT to 22. The print form is fed to the
top of the next page when a page feed code is issued or the TOP OF FORM button
is pressed.

PROM

Generates formatted code on the paper tape punc¢h from an object file. Applicable PROM writers are those which are
supplied by Britronics, Intel, Takeda and Minato|Electronics.
Example: PROM »

T

SIGN [$FDn] |

Changes the password of the disk in $FDn.

During a disk copy or formatting operation, the system checks the programmer-specified password with that stored
in the disk directory for a match and carries out the specified operation only when a match occurs.

Example: SIGN < : Changes the password of the disk currently logged on.

STATUS devicename, status

Sets the status of the I/O device identified by devicename to status.
Example: STATUS $SIA, $1234 : Sets|the control status of serial input port A to 1234 (hexadecimal).

VERIFY filenamel, filename2 [, ..., filenameN-1, fi;lenmneN] (?, X only for filenamel, ..., filenameN-1])

Compares the contents of files filenamel through filenameN.

Global switch /P : Specifies that the results of the comparison are to be listed on the LPT.

Example: VERIFY $CMT, $FD2 ; ABC </ : Compares the first file on the cassette tape with source file ABC in
FD2.

SYS-62

4.6 System Error Messages
There are four system error message formats.

— ERR: error message
Pertains mainly to coding errors. Issued when invalid commands are detected.
— ERR filename (device name) : error message
Indicates errors pertaining to file or device specifications.
— ERR logical number: error message
Indicates errors pertaining to logical number specifications.
— ERR logical number file name (device name): error message

Indicates errors pertaining to logical number specifications and file (or device) specifications.

The system error messages are listed below. The error numbers are not output.

ERR- 1 syntax
2 il command
3 il argument
4 il global switch
5 il data
6 il attribute ; Illegal file attribute found
7 different file mode
8 il local switch
9 il device switch
10
11 no usable device ; Device unavailable
12 double device
13 directory in use
14
15
16 not enough arguments
17 too many argument
18
19
20 Nno memory space
21 memory protection
22 END ?
37 Break
38 system id ; Disk not conforming to Floppy DOS format.
39 System error ; System malfunction, user program error, disk replaced

improperly, etc.

SYS-63

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

not found

too long file ; File size exceeds 65535 bytes

already exist

already opened ; The file has been already opened or
not opended the logical number is already used.
read protected
write protected
permanent

end of file

no byte file
not ready

too many files ; Number of files exceeds 96
disk volume ; Disk replaced improperly
no file space

unformat ; Disk unformatted

FD hard error ; Hardware related disk error
il data

no usable disk

(sub)master disk

mismatch sign

il file name ; Invalid file name
il file attribute ; Invalid file attribute
il file type ; Invalid file type
il file mode ; Invalid file mode
il lu# ; Invalid logical number
not ready
alarm ; Printer error
paper empty
time out
parity ; Paper tape reader or punch error
check sum
flaming
?ve[o 5 ; Serial I/O errors (to be implemented later)
interconnect
full buffer
uncontrollable
interface
> ; IEEE488 related errors (to be implemented later)
less data
much data
lu table overflow ; Attempt made to open too many files
source ?
destination ?
can’t xopen
too long line ; Line exceeding 128 bytes

end of record
diff record length

SYS-64

a ' 5. MUTUAL CONVERSION |

Mutual conversion between files generated by different system programs are possible for the following

combinations of files using the conversion procedure shown:

Possible Combinations of Files

File 1 ~ File2
Procedure
PSg)stem File Mode Iiystem File Mode
BASIC | FD/CMT | BTX < | Floppy DOS | FD/CMT | ASC | use DOS CONVERT command
BASIC | FD BSD < | Floppy DOS | FD ASC | use DOS CONVERT command
BASIC | FD BSD «— | Floppy DOS | CMT | ASC use DOS CONVERT command
BASIC | CMT BSD «— | Floppy DOS | FD ASC use DOS XFER command
— BASIC | CMT | BSD <— | Floppy DOS | CMT ASC fully compatible

BASIC | FD /CMT ,I OBJ < | Floppy DOS | FD / CMT OBJ use DOS CONVERT command
K CMT | BTX — | BASIC CMT BTX | use convert-tape (MZ-80T10C)
K CMT ASC =¥ | Floppy DOS | FD ASC use DOS XFER command with SCMT1
K CMT OBJ — ‘ Floppy DOS | FD OBJ use DOS XFER command with $CMT1

BASIC - MZ-80B BASIC interpreter, Versions SB-5510, -5610, -6510 and -6610.

Floppy DOS : MZ-80 Floppy DOS or BASIC compiler SB-7xxx

K 3 MZ-80K

FD : Floppy disk.

CMT : Cassette tape.

BTX : BASIC interpreter text file.

BSD : BASIC interpreter sequential data file.

ASC : ASCI file.

B OBJ : Object file.
Example

When converting BRD generated by D-BASIC to File of a form acceptable by Floppy DOS:
D-BASIC and Fig. 1 used
D-BASIC BRD ——— D-BASIC BSD

J DOS convert command used

Floppy DOS BRD —— Floppy DOS ASC
BASIC-compiler and Fig. 2 used

1@ REM BRD + BSD sample conversion program. 1@ REM BSD * BRD sample conversion program.

28 INPUT "RND FILE ? "iR$ 28 INPUT "SEQ@ FILE ? "3S$

3@ INPUT "SEQ FILE ? "3S$ 38 INPUT "RND FILE ? "3R$

43 XOPEN #1,R%: WOPEN #2,5% 4@ ROPEN #1,5%: XOFEN #2,R$

58 I=1 58 I=1: D$=CHR%($0D)

&0 INPUT #1(1)sA%: IF EOF(#1) THEN CLOSE : END &8 As=""

78 PRINT #2:A%: I=I+1: GOTO 48 78 INPUT #1,B%$: IF EOF(#1) THEN CLOSE : END
— 80 A$=A$+B$: L=LEN(A%)

Fig. 1 98 IF L>32 THEN PRINT "ERROR": CLOSE : END

188 IF L<32 THEN A$=A$+D$: L=L+1

118 IF L<22 THEN 70

120 PRINT #2(I),As$: I=I+1: GOTO 48
Fig. 2

SYS-65

http:comPil.er

