
Personal Computer

111Z-00ODU

Z-80 Assembler

SHARP

,.-...,......,....~-""""'->~""-"""'.."........"..,,~...s-'O>~~~~~-'-.......~~~~~~~~~O.~~-~~~~-~~-~-~"""'<L~~~-,.(

~
'f,*

NOTICE * 'f..

The MZ-80 series of sophisticated personal computers is manufactured by the SHARP iCORPORATION. Hardware and software specifications are subject to change without
prior notice; therefore, you are requested to pay special attention to version numbers lof the monitor and the system software (supplied in the form of cassette tape or mini- ~

floppy disk files). ~
This manual is for reference only and the SHARP CORPORATION will not be res- ~
ponsible for difficulties arising out of inconsistencies caused by version changes, ~

~

, typographical errors of omissions in the descriptions. ~

~ This manual is based on the SB-1500 series monitor and the SB-7000 series Floppy ~
~ DOS. ~
~"",.,.-"",...."...--...,...-"-""~..."..,...-...."...~.... ",-.... ,,-,,",-~-.,.., .. .,..,.~.~..,.... ..~.~ ..,..... ,,.; ..,,,........-,,..-"-.,.."-......-.,.. -..'"'.--"...-.-.... ~.,..,,.;."'-~~~.~

- CONTENTS­

INTRODUCTION

ASSEMBLY LANGUAGE RULES 3

Characters ... 4

Line 5

Label Symbols .. 5

Constants ... , 6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES 7

Definition Condition Messages .. 8

Error Messages .. 8

ASSEMBLER DIRECTIVES " 10

ENT (entry) .. 10

EQU (equate) ... " 11

ORG (origin) ... 12

DEFB n (define byte) 13

DEFB 'S', DEFB "S" (define byte) 13

DEFW nn' (define word) 14

DEFM 'S', DEFM "S" (define message) 14

DEFS nn' (define storage) 15

SKP n (skip n lines) 16

SKP H (skip home) .. 16

END (end) 16

MESSAGE TABLE .. " 17

ASM

INTRODUCTION

'The assembler translates a source file written in assembly language to generate a relocatable binary file;

the source file is one which has been generated and edited by the text editor, and the relocatable binary

file is an intermediate file between the source file and object file. It is possible to link several relocatable

files by the linker.

The asserrlbly source file is coded in assembly language. It consists of labels, mnemonic operations

codes, assembler directives, comments and an end directive; these are arranged according to the rules of the

assembler. The source file edited by the editor is written in ASCII code. The assembler translates the

source file to generate a relocatable file and outputs messages which indicate definition conditions and

syntax errors. These messages are included in the assembly listing which is displayed on the CRT or

printed on the printer.

The following DOS commands activate the assembler.

• 	 ASM SAMPLE

Activates the assembler. The assembler translates source file SAMPLE.ASC and generates relocatable

file SAMPLE. RB.

• 	 ASM SAMPLE, $LPT / L, $CRT / E

Activates the assembler. The asserrlbler translates source file SAMPLE.ASC, generates relocatable file

SAMPLE.RB, prints the assembly listing on the printer and display only erroneous lines and external

reference lines of the CRT screen.

• 	 ASM/N SAMPLE, $SOA/L

Activates the assembler. The assembler translates source file SAMPLE.ASC and outputs the assembly

listing to serial output port A ($SOA), but does not generate a relocatable file since global switch/N

is specified.

• 	 ASM SAMPLE, $FD3; SAMLIST /L

Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable

file SAMPLE.RB and outputs the assembly listing in the same fonn as that printed on the printer to

SAMLIST.ASC on FD3 in ASCII code.

• 	 ASM SAMPLE, $LPTI L, $4000

Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable

file SAMPLE.RB and prints the assembly listing on the printer with a bias of $4000 added to the

relocatable address. Relocatable file is not affected by the bias of $4000.

ASM-'

http:SAMPLE.RB
http:SAMPLE.RB
http:SAMPLE.RB

Assembler source
file (ASCII)

Relocatable file
(RB)

Assembler

Symbol table

The assembler basically uses a 2-pass system. A pass is the process in which the assembler reads a source

file from its beginning to end. The following shows operation of the assembler with the 2-pass system.

During pass I, the assembler stores label

symbols according to the assembler rules in the
Floppy DOS

symbolic label table. Label symbols help thePASS 1 Assembler source Assembler

File (ASCII)
 operator to read and understand the program ~ Symbol table

easily.

During pass 2, the assembler generates a

relocatable file with reference to the symbol

table generated during pass I, then outputs the

assembly listing (on the CRT or printer).

The relocatable file and the assembly listing

do not occupy space in RAM, which is only

used by the symbol table. Therefore, the size

of the source file to be assembled is not limited

by the amount of RAM.

The following program list will help you understand the function of the assembler. This program is

only for reference and has no meaning.

Z80 ASSEMBLER SB-720 1 <A> PAGE 01 ??/??/??

01 **0000
02 0000 SAMPLE LIST
03 0000
04 2000 ORG 2000H
05 2000 3E33 LD A, '3'
06 2002 FE43 CP 43H
07 2004 FE43 CP 'C'
08 2006 FE05 CP ' [}{I '

09 2008 22 DEFB
10 2009 27 DEFB
11 200A 43 DEFB 'C'
12 200B 02 DEFB '''fr' ~,

13 200C 06050201 DEFM .~ [}{I 'fr ./} s><:=>'
14 2010 0304
15 2012 7E LD A, (HL)
16 2013 7E LD A,M ; M may be used in place of (HL).
17 2014
18 2014
19 2014 P XYZ: EQU 10
20 2014 C32120 JP ABC+XYZ ; Relocatable address ± EQU defined aymbol value.
21 2017 C30AOO ABC: JP XYZ
22 201A C31420 JP ABC-3
23 201D C30AOO JP 10 ; Absolute address 10
24 2020 C32A20 JP +10 ; Relative address 2AH (20H+I0)
25 2023 2100DO LD HL, DOOO ; Handled as a hexadecimal number.
26 2026 213930 LD HL,12345
27 2029 212120 LD HL, ABC+XYZ
28 202C 3EOD LD A, XYZ+3 ; EQU defmed label value ± numerica data
29 202E 3EFF LD A,-l ; Negative value is converted into one's complement.
30 2030 21FFFF LD HL,-l
31 2033 21FOFF LD HL,-10H
32 2036 C33520 JP -1
33 2039
34 2039 CD4A20 CALL ZZZ
35 203C CD5420 CALL ZZZ+10
36 203F CD4B20 CALL ZZZ+XXX
37 2042 21FFFF LD HL, -xxx
38 2045 21FEFF LD HL, -XXX-XXX
39 2048 4920 DEFW ZZZ-XXX
40 204A 00 ZZZ: NOP
41 204B P XXX: EQU
42 204B END

** Z80 ASSEMBLER SB-720 1 <A> PAGE 02 ??/??/??

ABC 2017 XXX 0001 XYZ OOOA ZZZ 204A ; Indicates the contents of the symbol table.

ASM·2

ASSEMBLY LANGUAGE RULES

The source program must be coded according to assembly language rules. This paragraph describes the

structure of the source program and the assembly language rules.

The assembly source program consists of the following.

Z80 instruction mnemonic codes

Label symbols

Comments

Definition directives

Assembler directives En try directives
(Pseudo instructions) Skip directives

End directive

Comments may be used as needed by the programmer; they have no effect on execution of the program

and are not included in the relocatable file.

All assembly source programs must be ended with the assembler directive END.

Z80 instruction mnemonic codes from the body of the assembly source program. These are explained

in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma., etc.) and

operands.

A label symbol symbolically represents an adtlress or data. A label symbol is either placed in the label

column and separated from the following instruction with a colon (:), or placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used) are

ignored. Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for

separators and special symbols may be used.

Comments are written between the separator 11 ; 11 and a IeR Icode; these have no influence on program

execution.

Assembler directives will be explained later in this manual. These are written in the same column as the

Z80 instruction mnemonic codes.

An END directive is one of the assembler directives; all assembly source programs must end with this

directive.

ASM-3

-Characters-

Characters which are used in an assembly source program are alphanumerics, sepecial symbols and other

characters. The special symbols have functional meanings. (Separators, ICR I, ISPACE I, etc.)

I) Alphabetic characters: A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

These characters are used to represent symbols and instruction mnemonic codes. A '"'"' F are also used

for representing hexadecimal values. Further, D is used to indicate decimal and H is used to indicate

hexadecimal.

2) Numerics: 0 I 2 3 4 5 678 9

These are used to represent constants and symbols. Whether a constant is a hexadecimal number or a

decimal number is determined according to the rules of constants.

3) Space

Spaces are treated as separators except when they are used in comments. They perform the tabulation

function on the assembly listing when they are placed between op-code and operand or between ope­

rand and comment as shown below:

Example: 	 OR ISp IFOHI SP I; A<-XO

XYZ: PUSH I SP IAF Editor list
}
ADD ISpIHL, BC ISpl;BC = COUNT

...
OR FOH ;A<-XO

XYZ: PUSH AF } Assembly listing
ADD HL,BC ;BC=COUNT

t t
Tab set Tab set

4) Colon : 1111

A colon behaves as a separator when it is placed between a label symbol and an instruction. It performes

the tabulation function on the assembly listing.

Example: START: ill SP, START

MAIN: ENT

t t
Tab set Tab set

An address is assigned to the label symbol even if no instruction follows. (See the prargraph on symbols.)

Example: ENTRY: +-"ENTRY" is assigned the same address as 11 TOPO".

TOPO: PUSH HL

5) Semicolon ; 1111

A semicolon represents the beginning of a comment. None of the characters between a semicolon and a

I eR 1 code have any influence on execution of the program. The semicolon is placed at the top of a line

or the beginning of a comment column.

Example:

; SAMPLE PROGRAM } All lines are comments.

CMMNT: ENT ; COMMENT

Commen t column ~,

ASM-4

6) Carriage return (I eR I)
A carriage return code represents the end of a line.

7) Other special symbols: + - '(),

All these are special symbols used in instructiln statements.

8) Other symbols

Other characters are not generally used, although they may be used as symbol labels or in the comment

column.

-Line-

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage

return. Except for comments, each line includes only one of the Z80 instructions, an assembler directive,

an end statement or an empty statement for a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the assembly

listing on page 7.)

-Label Symbols-

All characters other than special symbols may be used for label symbols, but generally alphanumerics

are used. Each label symbol can consist of up to 6 characters; the 7th and following characters, if used, are

ignored by the assembler.

Example: Correct ABC START BUFFER 50STEP

Incorrect (ABC) ,HL IY+3 XYZ+3 +- Special characters are used.

COMPAREO]
COMPARE! The following label are treated as the same label symbol "COMPAR".

Assembler directive EQU defines data (I byte or 2 bytes) for a label symbol and assigns it to the label.

Example: ABC: EQU 3

CR: EQU ODH

VRAMO: EQU DOOOH

Assembler directive ENT defines a label symbol as a global symbol. A colon (:) placed between a

label symbol and a following instruction defines the label symbol as a relocatable instruction address.

Example: RLDR: ENT

RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), the assembier first searches

the symbol table for the specified label symbol; if it is not found, the assembler treats it as hexadecimal

data. For example, when CALL ABC is encountered, the assembler searches the symbol table for ABC;

if it is not found, the assembler treats it as OABCH and calls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which it is

used, or must be defined as a global symbol in another assembly source program unit. Otherwise, it is

converted into binary and left undefined.

A label symbol which has once been defined cannot be defined again.

ASM-5

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: ABCD: ENT Label symbols ABCD, EFGH and IJK are all defmed
EFGH: ENT as relocatable addresses of LD A, B. ABCD and EFGH

} are also defined as global symbols. IJK LD A,B

}
ABCD:

Same as the above, except that ABCD and EFGH are not
EFGH: global symbols.

IJK: LD A,B

-Constants-

There are two types of constants: decimal and hexadecimal. + and - signs can be attached to these.

A character string which is defined as a label symbol is treated as a label symbol even if it satisfies the

requirements for a constant.

The assembler treats a constant ~s a decimal constant when it consists of numerics only or it consists

of numerics followed by D. .---,

Example: 23 999 +3 -62 16D 0003D

16 3

The assembler treats a constant as a hexadecimal constant when it consists of 0""'9, A, B, C, D, E and

/ or F followed by H.

Example: 2AH CDH +OlH -BH 0010H OOADH OOH

A constant used in the operand of a JP, JR, DJNZ or CALL instruction represents an absolute address

when it has no sign and a location relative to the current address when it has a sign. In other cases, con­

stants without signs and those with a + sign represent numerics, while those with a - sign are converted

into two's complement.

ASM-6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES

The assembly listing is ouput to the CRT screen or printer when a DOS system command ASM is

executed with $CRT / L or $LPT / L specified as an argument. Examining the assembly listing is one of

the most important procedures in assembly programming since this is when a check is made for errors in

the source program.

The assembler translates the specified source program and outputs the assembly listing, which includes

line numbers, relative addresses, relocatable binary codes, assembler messages and the source program list

(including label symbols, Z80 instruction mnemonic codes and comments). The assembly listing is pages

every 60 lines.

The comment column is displayed when the number of characters per line is set to 80, but is not dis­

played when it is set to 40.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-cpdes, operands

and comment columns.

Relative Assembler

address message

Relocatable ~Line~ binary code Label Op-code Operand Commentr;mber
I I I 11 I I I

** Z80 ASSEMBLER SB-720 1 <A> PAGE 01 ??/?? /??] This message is output at the top of each page.

01 0000

02 0000 ; ASSEMBLER LIST SAMPLE

03 0000

04 0000 P LETNL: EQU 0762H

05 0000 P MSG: EQU 06B3H

06 0000

07 0000 START: ENT ; ENTRY FROM UNIT#l

08 0000 MAIN: ENT ; ENTRY FROM UNIT#2

09 0000 310000 LD SP, START ; INITIAL STACK POINTER

10 0003 210000 E LD HL,TEMPO

11 0006 DD210000 E LD IX, TEMP1

12 OOOA DD 36 0000 EE MAINO: LD (IX +CONSTO), CONST1

13 OOOE 00 Q XOA A ; A<--OO

47 005A lA MAIN7: LD A, (DE)

48 005B B7 OR A

49 005C 2000 V JR NZ,COMP

50 005E EB MAIN8: EX DE,HL ; EXCHANGE DE, HL

** Z80 ASSEMBLER SB-720 1 <A> PAGE 02 ??/?? /??] A new page is started when the number of lines
on the preceding page reaches 60.

ASM·7

Errors detected during assembly and definition conditions are indicated with assembler messages.

-Definition Condition Messages-

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by the

operand is not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another. assembly program unit for

linkage with the current unit by the link er. (See "Assembler Directive ENT" on page 10.)

An undefined byte of data is treated as "00"; 2 undefined bytes of data (or an address) are uncertain.

Example: E LD B, CONSTO
~The byte of data "CONSTO" is not defined in the program unit.
E CALL SORT
~Address SORT is not defined in the program unit.
EE BIT TOP, (IY+FLAG)
1t The byte of data" FLAG" is not defmed in the program unit.

The byte of data" TOP" is not defined in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value

assigned. A label symbol indicated by this .message can be referenced from an external file. In this case,

however, the program unit including the EQU statement must be loaded before the other program units

which are to be linked with it.

The P message is displayed when a label symbol different from those stored in the symbol table during

PASS 1 is found.

Example: P LETNL: EQU 0762H
P DATAl: EQU 3
~Indicates that LETNL and DATAl are defined by EQU.

The P message is displayed in the relocatable binary code column rather than in the assembler
message column.

-Error Messages-

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.

Example: C JP +1000-3

F (Format error)

This message indicates that the instruction format is incorrect.

N (Non label error)

This message indicates that ENT or EQU has no label symbol.

Example: N EQU 0012H

'-v-'"

No label symbol

ASM-8

L (erroneous Label error)

This message indicates that an illegal label symbol is used.

Example: 	 L JR XYZ

L- XYZ is not defmed in the current source program.
No externally defined global symbol can be used as an operand of the JR or DJNZ commands.
The L message is displayed if such a label symbol is specified.

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.

Example: M ABC: LD DE, BUFFER

2

M ABC: ENT

~Indicates that ABC is defmed more than once.

o (erroneous Operand)

This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)

This message indicates that a mnemonic code is incorrect.

Example: Q CAL XYZ

CALL XYZ is correct.

Q PSH B

PUSH BC is correct.

S (String error)

This message indicates that single quotation mark(s) are omitted from a DE FM statement.

Example: S DEFM GAME OVER

DEFM 'GAME OVER' is correct.

v (Value over)

This message indicates that the value of the operand is out of the prescribed range.

Example: V LD A, FF8H

V SET 8, A

V JR -130

ASM-9

ASSEMBLER DIRECTIVES

Assembler directives (also sometimes referred to as "pseudo instructions") control assembly, but are

not converted into machine language. However, in the DEFB, DEFW and DE FM directives, their operands

are sometimes converted into machine language.

-ENT (entry)-

This assembler directive defines a label symbol as a global symbol. Label symbols which are referenced

by two or more programs when multiple programs are linked must be defined by the entry directive.

Label symbols defmed by the entry directive are included in the relocatable file so that the linker can

identify them The symbolic debugger can performs symbolic addressing using these label symbols.

Label symbols which are not defined by the entry directive contribute only to assembly of the curre:nt

source program unit, and are not included in the relocatable file output by the assembler. However, labels

defined by the EQU directive are exceptions since they are defined as global symbols and entry definition

is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN and

GAUSS-SR. The E message in the assembler message column indicates that a label symbol which is not

defined in the current program unit is being referenced externally.

; GAUSS-MAIN

MAINO: ENT· ~ Entry defmition of label symbol
MAlNO · CALL CMPLX

Program unit 1 Address undefmed
"GAUSS-MAIN 11

.---"---.

CooOOO E C1-LL CMPLX+2 ~ No offset can be added to a label symbol

E message · which is defmed externally.

END ~ END is always required at the end of a
program unit.

; GAUSS-SR

CMPLX: ENT ~ 	Entry defmition of label symbol
CMPLX

Program unit 2
RET

IIGAUSS-SR II
Address undefined --.

I, C30000 E JP MAINO

[i Emessage
END

ASM-10

-EQU (equate)-

This assernhier directive defines a Iabel symbol with a numeric value (or address) assigned. The numeric

value must be a decimal or hexadecimal constant. Any numeric value. can be added to or subtracted from a

Iabel ymbol once it is defined with a numeric value assigned; this allows a new Iabel symboltobe defined.

The Iabel symbol used as an address in the operand is generally treated as a relative address. However,

when a specific address is assigned to the Iabel symbol with an EQU directive, the address is not changed

during assembly.

The EQU directive also defines a Iabel symbol as a global symbol. A Iabel defined by the EQU directive

can be referenced by an external program unit. However, program units including such directives must be

loaded before other program units tobe linked.

The following example illustrates use of the EQU directive to define Iabel symbols as monitor sub­

routine addresses and I I 0 port numbers for a specific device. The P messages indicate that the EQU

directives define the Iabel symbols as global symbols.

** ZBO ASSEMBLER SB-7201 <A> PAGE 01 ??/??/??

01 0000

02 0000 MONITOR SUBROUTINE

03 0000

04 0000 p BRKEY: EQU 0527H

05 0000 p GETKY: EQU 0610H

06 0000 p PRNTS: EQU 063AH

07 0000 p PRNT: EQU 063CH

08 0000 p MSG: EQU 06B5H

09 0000 p NL: EQU 0757H

10 0000 p LETNL: EQU 0764H

11 0000 p GETL: EQU OBESH

12 0000 SKP 3

16 0000

17 0000 ; SET PORT#: PRINTER

18 0000

19 0000 p POTFE: EQU FEH

20 0000 p POTFF: . EQU POTFE+1 ; POTFF is defmed with FF (hexadecimal)

21 0000 assigned.

22 0000 p CON1: EQU 1

23 0000 p CON2: EQU 2

24 0000 p CON3: EQU CONl+CON2 ; This results in assigned of 3 to CON 3. In this
case, CONl and CON2 must be defmed in
advance.

ASM-11

-ORG (origin)-

This assernhier directive determines the ohject program loading address. For example, when

ORG 2000H

is p_laced at the heginning of the program to he assemhled, the assernhier assemhles the program with a

loading address of 2000H specified.

When a relocatahle hinary file generated with the loading address specified with the ORG directive is

linked with other programs hy the linker, the loading address specified with the ORG directive is effective

and that specified with the linker js not.

When relocatahle files with loading addresses specified with ORG directives are linked, or when more

than one ORG directives is used in a program, the loading addresses specified must not overlap and must

appear in the sequential order.

When a relocatahle file with a loading address specified with an ORG assernhier directive is converted

into a system file using the LINK I S command, the specified loading address is ignored.

** Z80 ASSEMBLER SB-720 1 <ORG> PAGE 01 ??/??/??

01 0000 ; TYPE COMMAND

02 0000

03 2000 ORG 2000H

04 2000 .TYPE: ENT

05 2000 116220 LD DE, SWTBL ; DE: == SWITCH TABLE

06 2003 CDOOOO E CALL ?GSW ; CHECK GLOBAL SWITCH

07 2006 D8 RET c
08 2007 CDOOOO E CALL C&L1 ; SELECT CRT OR LPT

09 200A CDOOOO E CALL ?SEP ; CHECK SEPARATOR

10 200D D8 RET c
11 200E FE2C CP 2CH ; SEPARATOR:;; II, II ?

12 2010 3E03 LD A,3 ; 3 IS ERR CODE

13 2012 37 SCF

14 2013 CO RET NZ ; NO, ERR RETURN

15 2014 CDOOOO E TYPEO: CALL ?LSW ; CHECK LOCAL SWITCH

16 2017 D8 REC c
17 2018 3E08 LD A,8 ; 8 IS ERR CODE

18 201A 37 SCF

19 201B CO RET NZ ; ERROR, LSW EXIST

20 201C OEBO LD c, 128 ; LU#:== 128

21 201E D9 EXX

22 201F 0604 LD B,4 ; DEF AUL T MODE = ASC

23 2021 D9 EXX

55 2062 88 SWTBL: DEFB 88H ;/P

56 2063 FF DEFB FFH ; END OF SWTBL

57 2064 BUFFER: DEFS 128 ; 128 BYTE BUFFER

58 20E4 END

* * ZBO ASSEMBLER SB-7021 <ORG> PAGE 02 ??/??/??

.TYPE 2000

TYPE20 2048

BUFFER 2064

TYPEER 2058

SWTBL 2062 TYPEO 2014 TYPE10 203C

ASM-12

~

-DEFB n (define byte)-

This directive sets constant n (1 byte) in the address of the line on which the directive is specified. A

1abe1 symbol defined with a constant (1 byte) assigned may be used in p1ace of n.

This directive (as well as DEFW and DWFM) is used to form message data or a graphic data group for a

code conversion table or other table.

The following example forms the message "ERROR 11 in ASCII code. Since it uses ODH as an end mark,

monitor subroutine 06B5H can be used to output the message.

13 1 FF3 B7 OR A
14 1FF4 CAOOOO E JP Z1 READY
15 1FF7 110020 LD DE, MESGO
16 lFFA CDB506 CALL MSG
17 1FFD C30000 E JP MAIN2
18 2000 p MSG: EQU 06B5H
19 2000
20 2000 ; MESSAGE GROUP
21 2000
22 2000 MESGO: ENT ;

11 ERROR 11

23 2000 45 DEFB 45H
24 2001 52 DEFB 52H
25 2002 52 DEFB 52H
26 2003 4F DEFB 4FH
27 2004 52 DEFB 52H
28 2005 OD DEFB ODH

-DEFB 'S', DEFB IISII (define byte)-

This directive sets the ASCII code corresponding to the character enclosed in single or double quota­

tion marks in the address of the 1ine on which the directive is specified.

Since this directive converts characters to ASCII code, the above examp1e can be rewritten as follows.

21 2000 MESGO: ENT ;
11 ERROR 11

22 2000 45 DEFB 'E'
23 2001 52 DEFB IRI

24 2002 52 DEFB 'RI

25 2003 4F DEFB 101

26 2004 52 DEFB IRI

27 2005 OD DEFB ODH
28 2006 06 DEFB I ~ I

29 2007 03 DEFB I ~ I

30 2008 OD DEFB ODH
31 2009 27 DEFB II I II

32 200A 22 DEFB I II I

ASM-13

-DEFW nn' (define word)-

This directive sets n' in the address of the line on which the directive is specified and n in the following

address; in other words, it sets two bytes of data. A Iabel symbol may be used in place of nn'.

39 5FF1 CMDT: ENT ; COMMAND TABLE
40 5FF1 41 DEFB 41H
41 5FF2 0053 DEFW CMDA
42 5FF4 42 DEFB 42H
43 5FF5 1E53 DEFW CMDB+3
44 5FF7 53 DEFB 53H
45 5FF8 0000 E DEFW CMDS
46 5FFA OD DEFB ODH
47 5FFB CONSTO: ENT
48 5FFB OF01 DEFW 010FH
49 SFFD CONST1: ENT
50 SFFD 660D DEFW OD66H

-DEFM 'S', DEFM 11 5 11 (define message)-

This directive sets the character string enclosed in single or double quotation marks in ASCII code in

addresses starting at that of the line on which the directive is specified. The number of characters must

be within the range from 1 to 64. On the assembly listing, codes for 4 characters are output on each line.

The example on the preceding page can be written as follows with this directive.

21 2000 MESGO: ENT ;
11 ERROR 11

22 2000 4552524F DEFM 'ERROR'
23 2004 52
24 2005 OD DEFB ODH
25 2006 06034142 DEFM ' © r::;> AB'
26 200A OD DEFB ODH
27 200B 41274247 DEFM II A' B' C' II

28 200F 4327
29 2011 OD DEFB ODH

ASM-14

""\

~

-DEFS nn' (define storage)-

This directive reserves nn' bytes of memory area starting at the address of the line on which the direc­

tive is specified.

This directive adds nn' to the reference counter contents; the contents of addresses skipped are not

defined.

The following example reserves buffer areas.

02 4BB8 TEMPO: ENT ; BUFFER A

03 4BB8 DEFS 1

04 4BB9 TEMP1: ENT ; BUFFER B

05 4BB9 DEFS 2

06 4BBB TEMP2: ENT ; BUFFERC

07 4BBB DEFS 2

08 4BBD TEMP3: ENT ; BUFFER D

09 4BBD DEFS 128

10 4C3D BFFR: ENT ; BUFFER E

11 4C3D DEFS A

12 4C47 BUFFER: ENT ; BUFFER F

13 4C47 DEFS 2

The addresses are increased by amounts corresponding to the values indicated by the respective DEFS statements.

ASM-15

-SKP n (skip n lines)-

This directive advances the assembly listing by n lines to make the listeasy to read.

30

31 3BB8

32 3BB9

33 3BBC

34 3BBF

35 3BCO

39 3BCO

40 3BCO

41 3BCO

42 3BCO

AF

32B84B

110020

C9

COMMON: ENT

XOR A

LD (TEMPO), A

LD DE, MESGO

RET

SKP 3

; ABNORMAL RETURN

ABNRET: ENT

-SKP H (skip home)-

; NORMAL RETURN

; A<- - 00

; CLEAR CMD BUFFER

; "READY"

} 3 line feeds are made.

; SET INVALID MODE

This directive advances the page during output of the assembly listing.

-END (end)-

This directive declares the end of the source program. All source programs must be ended with this

directive. Assembly operation is not completed if this directive is omitted.

The assembly outputs

END?

when it reads a source file which doesn't include an END directive.

ASM-16

Defmition status message

E (External)

P (Phase)

Error message

c (illegal Character
error)

F (Format error)

N (Non Iabel error)

L (erroneous Label
error)

. M (Multiple Iabel
error)

0 (erroneous .
Operand)

Q (Questionable
mnemonic)

s
(String error)

V
(V alue over)

END?

MESSAGE TABLE

Meaning

Indicates that a Iabel symbol is being
referenced externally ; that is, the label
is not defined in the current source
program unit.

Defmes a Iabel symbol with a constant
assigned.
This message is also output when a
Iabel symbol is encountered during
pass 2 which was not encountered
during pass 1.

Meaning

Indicates that an illegal character is
used in the operand.

Indicates that the instruction format
is incorrect.

Indicates that no label symbol is
specified for ENT or EQU.

Indicates that an illegallabel symbol
is used.

Indicates that a label symbol is defined
two or more times.

Indicates that an illegal operand is
specified.

Indicates that the mnemonic code is
incorrect.

Indicates that single or double quota-
tion mark(s) are omitted.

lndicates that the value of the operand
is out of the prescribed range.

Indicates that the END directive is
missing from the source program.

Example

E LD B, CONSTO
L_The data byte "CONSTO" is undefmed.
E CAtL SORT
L_The address "SORT'' is undefined.
EE BIT TOP, (IY +FLAG)
t L The data byte "FLAG" is undefined.

The data byte "TOP" is undefined.

P LETNL: EQU 0762H
P DATAI : EQU 3
L_LETNLand DATAI are defmed by EQU.
The P message is displayed in the relocatable
binary code column rather than in the assernhier
message colurnn.

Example

c JP +1000-3

N EQU 0012H
L_No label symbol

· L JR XYZ
~ XYZ is not defmed in the current program.
No externally defmed global symbol can be
used as the operand of a JR or DJNZ command.
If such a Iabel symbol is specified, the L message
is displayed.

M ABC:LD DE, BUFFER
2

M ABC: ENT
~ABC is defmed twice.

Q CAL XYZ

CALL XYZ is correct.

s DEFM GAME OVER

DEFM 'GAME OVER' is correct.

V LD A, FF8H V SET 8, A
V JR -130

Note: Refer to the System Error Messages in the System Command manual for other system errors.

ASM-17

